期刊文献+

基于列数据库和图缓存的海量RDF管理 被引量:2

Massive RDF Management Based on Column Oriented Database and Graph Cache
原文传递
导出
摘要 针对现有的基于关系数据库和图数据库存储RDF数据集的几种模型中查询性能的不足,将列数据库和图缓存相结合,提出一种新的管理海量RDF数据的方案.该方案在底层磁盘采用基于列的关系存储,同时在内存中构建RDF图模式的存储,并设计实现了一套新的SPARQL查询引擎.通过相关分析和各种存储模式的实验结果对比分析,验证了该方案的可行性,表明了该方案具有更高的查询效率. Aiming at the poor query performance of several models based on relational databases and graph database for RDF dataset storage,a new method is given to store and manage the massive data efficiently by combining the column-oriented model and graph model. RDF data is stored in disk based on column-oriented relational model. Part of RDF data are loaded in memory as graph schema. Besides,a SPARQL query engine is designed and implemented. According to results of the comparative experiment,this method is practicable and more efficient in query performance.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2015年第2期145-150,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(60803160 61100133 61272110) 国家社会科学基金重大计划(11&ZD189) 湖北省自然科学基金计划(2013CFB334) 湖北省教育厅科研项目(Q20101110 D2009110) 湖北省高等学校优秀中青年科技创新团队计划(T201202) 湖北省教育厅教研项目(2011s005) 武汉市科技攻关计划(201110821225) 软件工程国家重点实验室(武汉大学)开放基金(SKLSE2012-09-07)
关键词 海量RDF 列式数据库 内存图模型 缓存查找 massive RDF column-oriented database memory graph model cache lookup
  • 相关文献

参考文献6

  • 1I.iu X F, Thomsen C, Pedersen T B, et al. 3XI.: An Efficient DBMS-Based Triple-Store[DB/OL]. [2014-03-04]. http://ieee:rJlore, ieee. org/xpl/articleDe.tails, jsp? reload true arnumber--6327440.
  • 2Atre M, Chaoji V, Zaki M J, etal. Matrix Bit load- ed: a scalable lightweight join query processor for RDF data[C]//Proceedings of the 19th International Con ference on World Wide Web, WWW '10. New York: ACM, 2010.. 41-50.
  • 3Liarou E, Idreos S, Manegold S, et al. MonetDB/ DataCell.. Online Analytics in a Streaming Column- Store[J]. PVLDB, 2012,8:1910-1913.
  • 4项灵辉,顾进广,吴钢.基于图数据库的RDF数据分布式存储[J].计算机应用与软件,2014,31(11):35-39. 被引量:12
  • 5Idreos S, Groffen F, Nes N,et al. MonetDB: Two decades of research in column-oriented database archi tectures[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2012, 35 : 40-45.
  • 6Bizer C, Sehultz A. The Berlin SPARQI. Benchmark [J]. IntJ Semantic Web lnf Syst, 2009, 5(2): 1-24.

二级参考文献16

  • 1Berners-Lee Tim, James Hendler, Ora Lassila. The semantic web [ J 1. Scientific American Magazine ,2001 ( 8 ).
  • 2RDF current status [ EB/OL ]. http ://www. w3. org/standards/techs/ rdf#w3 c_all.
  • 3Noels,Steven. NOSQL [ J ]. Informatie-Maandblad voor de Informatievoorz- iening,2011,53(7).
  • 4RDF access to relational databases [ EB/OL]. http://www, w3. org/ 2003/01/21 - RDF - RDB - access/.
  • 5Storing RDF in a relational database [ EB/OL]. http ://infolab. stan- ford. edu! melnik/rdf/db, html.
  • 6Kevin Wilkinson, Craig Sayers, Harumi A Kuno, et al. Efficient RDF storage and retrieval in Jena2 [ E ]//Proceedings of SWDB,2003 : 131 - 150.
  • 7CraiG Franke,Samuel Morin,Artem Chebotko. Distributed semantic web data management in HBase and MySQL cluster[ C]//2011 IEEE 4th In- ternational Conference on Cloud Computing,2011:105-112.
  • 8Renzo Angles, Claudio Gutierrez. Querying RDF data from a graph da- tabase perspective [ C ]//Proceedings of ESWC,2005 : 346 - 360.
  • 9Valerie Bonstrom, Annika Hinze, Heinz Schweppe. Storing RDF as a graph [ C ]//Proceedings of LA-WEB ,2003:27 - 36.
  • 10Infinitegraph [ EB/OL]. http ://www. infinitegraph, corn/.

共引文献11

同被引文献12

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部