期刊文献+

基于分数低阶空间时频矩阵的脑电诱发电位盲提取

Evoked Potential Blind Extraction Based on Fractional Lower Order Spatial Time-Frequency Matrix
原文传递
导出
摘要 对诱发电位(EP)信号中具有强脉冲过程的脑电图(EEG)噪声,可以用α稳定分布模型来描述。基于分数低阶矩对传统的Cohen类时频分布进行了改进,得到了新的分数低阶空间时频分布(FLO-STFM),据此提出了一种新的可在α稳定分布环境下工作的分数低阶空间时频欠定盲分离算法(FLO-TF-UBSS)。将该盲分离算法应用到EP信号的提取,仿真实验结果表明所提出的盲分离算法能较好地在EEG噪声环境下实现对EP信号的盲提取,相关系数以及盲提取效果都优于基于二阶的TF-UBSS算法。 The impulsive electroencephalograph(EEG)noises in evoked potential(EP)signals is very strong,usually with a heavy tail and infinite variance characteristics like the acceleration noise impact,hypoxia and etc.,as shown in other special tests.The noises can be described byαstable distribution model.In this paper,Wigner-Ville distribution(WVD)and pseudo Wigner-Ville distribution(PWVD)time-frequency distribution based on the fractional lower order moment are presented to be improved.We got fractional lower order WVD(FLO-WVD)and fractional lower order PWVD(FLO-PWVD)time-frequency distribution which could be suitable forαstable distribution process.We also proposed the fractional lower order spatial time-frequency distribution matrix(FLO-STFM)concept.Therefore,combining with time-frequency underdetermined blind source separation(TF-UBSS),we proposed a new fractional lower order spatial time-frequency underdetermined blind source separation(FLO-TF-UBSS)which can work inαstable distribution environment.We used the FLO-TF-UBSS algorithm to extract EPs.Simulations showed that the proposed method could effectively extract EPs in EEG noises,and the separated EPs and EEG signals based on FLOTF-UBSS were almost the same as the original signal,but blind separation based on TF-UBSS had certain deviation.The correlation coefficient of the FLO-TF-UBSS algorithm was higher than the TF-UBSS algorithm when generalized signal-to-noise ratio(GSNR)changed from 10 dB to 30 dB andαvaried from 1.06 to 1.94,and was approximately equal to 1.Hence,the proposed FLO-TF-UBSS method might be better than the TF-UBSS algorithm based on second order for extracting EP signal under an EEG noise environment.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第2期269-274,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61261046) 江西省教育厅科技基金资助项目(GJJ11621 GJJ11244 GJJ11245 GJJ14739 GJJ14721) 九江学院科技项目资助(2013KJ01 2013KJ02)
关键词 Α稳定分布 生物医学信号 诱发电位 盲源分离 分数低阶 alpha(α)stable distribution biomedical signal evoked potential blind source separation fractional lower order
  • 相关文献

参考文献10

  • 1LIU Hongtao, CHANG C Q, LUK K D K, et al. Compari- son of blind source separation methods in fast somatosensory- evoked potential detection [J]. J Clin Neurophysiol, 2011, 28 (2) : 170-177.
  • 2RAMIREZ-CORTES J M, ALARCON-AQUINO V, RO- SAS-CHOLULA G, et al. Antis-based P300 rhythm detec- tion using wavelet feature extraction on blind source separated EEG signals [M]//AO S-L, AMOUZEGAR M, RIEGER B B. Intelligent Automation and Systems Engineering. New York: Springer New York, 2011, 103: 353-365.
  • 3KLADOS M A, PAPADELIS C, BRAUN C, et al. REG- ICA: A hybrid methodology combining Blind Source Separa- tion and regression techniques for the rejection of ocular arti- facts[J]. Biomed Signal Process Control, 2011, 6(3): 291- 300.
  • 4AHMADIAN P, SANEI S, ASCARI L, et al. Constrained blind source extraction of readiness potentials from EEG ['J]. IEEE Trans Neural Syst Rehabil Eng, 2013, 21 (4): 567- 575.
  • 5SAHMOUDI M, ABED-MERAIM K, BENIDIR M. Blind separation of impulsive alpha-stable sources using minimum dispersion criterion[J]. IEEE Signal Process Lett, 2005, 12 (4) : 281-284.
  • 6查代奉,杨耀防,车向新,李卫东,邱天爽.低阶非高斯噪声下基于BOREL谱测度的诱发电位少次提取方法[J].中国生物医学工程学报,2009,28(2):177-182. 被引量:1
  • 7林政剑,查代奉,盛健.基于共变的非高斯噪声中诱发电位的盲分离方法[J].生物医学工程学杂志,2010,27(4):727-730. 被引量:3
  • 8郭玙,邱天爽,李小兵,查代奉.Alpha稳定分布噪声下单路EP信号的动态提取方法[J].中国生物医学工程学报,2008,27(5):684-688. 被引量:1
  • 9AISSA-EL-BEY A, NGUYEN L-T, ABED-MERAIM K, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain[J]. IEEE Trans Sig Process, 2007, 55(3): 897-907.
  • 10陆凤波,黄知涛,彭耿,姜文利.基于时频分布的欠定混叠盲分离[J].电子学报,2011,39(9):2067-2072. 被引量:10

二级参考文献41

  • 1查代奉,邱天爽.基于分数低阶矩的非高斯噪声中诱发电位提取新方法[J].中国生物医学工程学报,2006,25(1):41-45. 被引量:3
  • 2Gharieb RR, Cichocki A. Noise reduction in brain evoked potentials based on third-order correlations [ J ]. IEEE Transactions on Biomedical Engineering, 2001, 48(5) : 501 - 512.
  • 3Davila CE, Srebro R, Ghaleb IA. Optimal detection of visual evoked potential [J]. IEEE Transaction on Biomedical Engineering, 1998, 45(6) : 800 - 803.
  • 4Hazarika N, Tsoi AC, Sergejew AA. Nonlinear considerations in EEG signal classification [ J ]. IEEE Trans. Signal Processing, 1997, 45 : 829 - 936.
  • 5Ma X, Nikias CL. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower -order statistics [ J].IEEE Trans. on Signal Processing, 1996, 44: 2669- 2687.
  • 6Shao M, Nikias CL. Signal Processing with fractional lower order moments : stable processes and their applications [ C ]. Proceedings of IEEE, 1993, 81(7) : 986 - 1010.
  • 7Kong X, Qiu T. Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time-delay estimation [ J]. IEEE Transactions on Biomedical Engineering, 1999, 46(8) : 994 - 1003.
  • 8Gennady S, Taqqu MS. Stable Non-Gaussian Random Processes. Chapman&Hall, 1994. 189-193.
  • 9AZARIKA N, TSOI A A,SERGEJEW A. Nonlinear considerations in EEG signal classification[J]. IEEE Transactions On Signal Processing, 1997, 45:829-936.
  • 10MA X, NIKIA C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower-order statistics[J]. IEEE Transactions. on Signal Processing, 1996, 44: 2669-2687.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部