期刊文献+

基于2D-PCA特征描述的非负权重邻域嵌入人脸超分辨率重建算法 被引量:7

Novel Neighbor Embedding Face Hallucination Based on Non-negative Weights and 2D-PCA Feature
下载PDF
导出
摘要 在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特征选择以及权重符号限定的重要作用,该文提出一种基于2维主成分分析(2DPCA)特征描述的非负权重邻域嵌入人脸超分辨率重建算法。首先将人脸图像分成若干子块,利用K均值聚类获得图像子块的局部视觉基元,并利用得到的局部视觉基元对图像子块分类。然后,利用2D-PCA对每一类人脸图像子块提取特征,并建立高、低分辨率样本库。最后,在重建过程中使用新的非负权重求解方法求取权重。仿真实验结果表明,相比其他基于邻域嵌入人脸超分辨率重建方法,所提算法可有效提高权重的稳定性,减少过拟合效应,其重建人脸图像具有较好的主客观质量。 In neighbor embedding based face hallucination, the training and reconstruction processes are performed in the feature space, thus the feature selection is important. In addition, there is no constraint specified for the signs of the weights generated in neighbor embedding algorithm, which leads to over-fitting and degradation of the recovered face images. Considering the importance of feature selection and the constraints of weights, a novel neighbor embedding face hallucination method is proposed based on non-negative weights and Two-Dimensional Principal Component Analysis(2D-PCA) features. First, the face images are partitioned into patches, and the local visual primitives are obtained by k-means clustering algorithm. The face image patches are classified with the local visual primitives generated before. Second, the feature of face image patches is captured with 2D-PCA, and the low and high dictionary is established. Finally, a novel non-negative weights solution method is used to obtain the weights. The experiment results show that the weights computed by the proposed method have more stable behavior and obviously less over-fitting phenomenon, furthermore, the recovery face images have better subjective and objective quality.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第4期777-783,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61071091 61071166 60802021 江苏省研究生培养创新工程(CXZZ12_0470 江苏省自然科学青年基金(BK20130867 江苏省高校自然科学研究项目(12KJB510019) 南京邮电大学校科研基金(NY212015)资助课题
关键词 图像处理 人脸超分辨率重建 邻域嵌入 局部视觉基元 2维主成分分析 Image processing Face hallucination Neighbor embedding Local visual primitives Two-Dimensional Principal Component Analysis(2D-PCA)
  • 相关文献

参考文献22

  • 1Baker S and Kanade T. Limits on super resolution and how to break them[J]. IEEE Transactions on Pattem A nalysis and Machine Intelligence, 2002, 24(9): 1167-1183.
  • 2Wang Xiao-gang and Tang Xiao-ou. Hallucinating face by eigentransformation[J]. IEEE Transactions on Systems, Man, and Cybemetics, 2005, 35(3): 425-434.
  • 3YangJian-chao, WrightJ, Huang T S, et al . Image super resolution via sparse representation[J]. IEEE Transactions on Image Processinq, 2010, 19(11): 2861-2873.
  • 4Wang Zhong-yuan,JiangJun-jun , Xiong Zi-xiang, et al . Face hallucination via weighted sparse representation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, 2013: 2198-220l.
  • 5Wang Zhong-yuan, Wang Shi-zheng, Xia Yang, et al. Face hallucination based on stepwise sparse reconstruction[C]. IEEE International Conference on Multimedia and Expo (ICME), SanJose, CA, 2013, DOl: 1O.1109/ICME. 2013. 6607470.
  • 6Naleer Haju Mohamed M, Yao Lu, and Feng Ln. Effective two-step method for face hallucination based on sparse compensation on over-complete patches[J]. lET Image Processing, 2013, 7(6): 624-632.
  • 7Liu Ce, Shum Heung-yeung, and Zhang Chang-shui. A two step approach to hallucinating faces: global parametric model and local nonparametric model[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kaual, Hawaii, USA, 2001: 192-198.
  • 8Chang Hong, Yeung Dit-yan, and Xiong Yi-min. Super resolution through neighbor embedding[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA, 2004: 275-282.
  • 9iangJun-jun, Hu Rui-min, Han Zhen, et al. Locality constraint iterative neighbor embedding for face hallucination[C]. IEEE International Conference on Multimedia and Expo (ICME), SanJose, CA, 2013, DOl: 10. 1109/ICME. 2013. 6607455.
  • 10Li Bo, Chang Hong, Shan Shi-guang, et al . Aligning coupled manifolds for face hallucination[J]. IEEE Signal Processing Letters, 2009, 16(11): 957-960.

同被引文献34

  • 1杨思晨,王华锋,王月海,李锦涛,王赟豪.深度学习机制与小波融合的超分辨率重建算法[J].北京航空航天大学学报,2020,46(1):189-197. 被引量:5
  • 2潘志庚,庞明勇.几何网格简化研究与进展[J].江苏大学学报(自然科学版),2005,26(1):67-71. 被引量:14
  • 3周艳,刘圣军,金小刚,冯结青,叶晓丰.基于测地距离的多边形网格模型约束变形[J].软件学报,2007,18(6):1543-1552. 被引量:7
  • 4Yan J, Lei Z, Stan Z L, et al. Learn to Comhine Multiple Hypotheses for Accurate Face Alignment [ C ] //IEEE Workshop on 300 Faces in-the-Wild Challenge (300- W), (in Conjunction with ICCV2013), 2013:1-6.
  • 5Bevilacqua M, Roumy A, Guillemot, et al. Low complex- ity single-image super-resolution based on nonnegative neighbor embedding [ C ]//British Machine Vision Confer- ence, 2012 : 135-144.
  • 6Chang H, Yeung D Y, Xiong Y, et al. Super-Resolution through neighbor embedding [ C ] //IEEE Conference on Computer Vision and Pattern Recognition, 2004:275-282.
  • 7Radu T, Vincent D S, Luc V G. Anchored neighborhood regression for fast example-based super-resolution [ C ]// IEEE International Conference on Computer Vision, 2013: 1920-1927.
  • 8Lu X,Yuan H,Yan P,et al. Geometry constrained sparse coding for single image super-resolution[ C]//IEEE Con- ference on Computer Vision and Pattern Recognition(CVPR) ,2012 : 1648-1655.
  • 9Yang J, Wright J, Huang T S, et al. Image super-resolu- tion via sparse representation [ J ]. IEEE Transactions on Image Processing, 2010, 19( 11 ) :2861-2873.
  • 10Wang X G, Tang X O. Hallucinating Face by Eigentrans- formation[ J]. IEEE Trans. on Systems Man and Cyber- netic, 2005, 35 (3) :425-434.

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部