期刊文献+

时频面滑窗掩膜的多分量信号高效重构算法 被引量:3

An Efficient Multi-component Signals Reconstruction Algorithm Using Masking Technique Based on Sliding Window in Time-frequency Plane
下载PDF
导出
摘要 针对基于特征值分解的Wigner-Ville分布信号重构算法运算复杂度高这一问题,该文提出一种高效多分量信号重构算法。首先,通过分析Wigner-Ville逆变换公式,推导出瞬时时刻重构序列与原序列之间的联系,提出一种高效的信号重构算法。然后,采用平滑伪Wigner-Ville分布作为时频掩膜抑制Wigner-Ville分布的交叉项,并通过在时频面内滑窗的方法逐一提取各分量信号。最后,结合高效信号重构算法和时频面滑窗掩膜技术,实现多分量信号快速准确重构。仿真实验证明了该算法的有效性和可行性。 Due to the huge computation for eigenvalue decomposition based signal synthesis method, an efficient multi-component signals reconstruction algorithm is presented in this paper. Firstly, by analyzing the inverse transformation for Wigner-Ville distribution, a fast signal reconstruction is developed using the inherent relationship between original signal and synthesized signal. Then, the smoothed pseudo Wigner-Ville distribution is used as a time-frequency masking to suppress the cross-terms, and the sliding window method in time-frequency plane is adopted to extract signals one by one. Finally, by combining the signal synthesis algorithm and the sliding window masking method, multi-component signals reconstruction can be realized efficiently and accurately. Simulation results demonstrate the effectiveness and feasibility of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第4期804-810,共7页 Journal of Electronics & Information Technology
基金 国家973计划项目(2011CB707001 国家自然科学基金(60971108 航空基金 西安电子科技大学基本科研业务费(BDY061428)资助课题
关键词 信号处理 信号重构 WIGNER-VILLE分布 时频掩膜 多分量信号 Signal processing Signal reconstruction Wigner-Ville distribution Time-frequency masking Multicomponent signal
  • 相关文献

参考文献15

  • 1Stankovic LJ. Multicomponent signal decomposition based on chirplet pursuit and genetic elgorithms[J]. IEEE Transactions on Signal Processing, 1994, 42(1): 225-229.
  • 2ZhengJ, Su T, Zhu W, et al . ISAR imaging of targets with complex motions based on the keystone time-chirp rate distribution[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1275-1279.
  • 3Francos A and Porat M. Analysis and synthesis of multicomponent signals using positive time-frequency distributions[J]. IEEE Transactions on Signal Processing, 1999, 47(2): 493-504.
  • 4Chen G and Wang Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J]. Mechanical Systems and Signal Processing, 2012, 28: 258-279.
  • 5卢振坤,杨萃,王金炜.基于Gabor变换的超声回波信号时频估计[J].电子与信息学报,2013,35(3):652-657. 被引量:9
  • 6Zheng L, Shi D, and ZhangJ. CAF-FrFT: a center-affinefilter with fractional Fourier transform to reduce the crossterms of Wigner distribution[J]. Signal Processing, 2014, 94:. 330-338.
  • 7Chen G, ChenJ, and Dong G M. Chirplet Wignr-Vme distribution for time-frequency representation and its. application[J]. Mechanical Systems and Signal; fr:Qeessingn 2013,41(1): 1-13.
  • 8Trintinalia L C and Ling H.Joint time-frequency ISAR using adaptive processing[J], IEEE Transactions on Antennas and Propagation, 1997,45(2): 221-227.
  • 9Trintinalia L C, Bhalla R, and Ling H. Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(11): 1664-1668.
  • 10Francos A and Porat M. Parametric estimation of multicomponent signals using minimum cross entropy timefrequency distributions[C]. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Paris, France, 1996: 321-324.

二级参考文献16

  • 1Cohen L. Time-frequency Analysis: Theory and Applications [M]. Prentice Hall, 1995. 158 - 162.
  • 2Marinovich N M, Eichmann G. An expansion of the Wigner distribution and its applicafions[ A ]. In Proc. IEEE. ICASSP-85 [C]. IEEE. Press, 1985,10-1021 - 1024.
  • 3Hlawatsch F, Krattenthaler W. Bilinear signal synthesis [ J ]. IEEE. Trans on Signal Processing, 1992,40(2):352- 363.
  • 4Stankovic L J, Thayaparan T, Dakovic M. Signal decomposition by using the S-method with appficafion to the analysis of HF radar signals in sea-clutter[J]. IEEE. Tram on Signal Processing, 2006,54(11) :4332 - 4342.
  • 5Cunningham G S, Williams W J. Fast implementations of generalized discrete time-frequency distributions[ J]. IEEE Trans on Signal Processing, 1994,42(6) : 1496 - 1508.
  • 6Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radially Gaussian kernel [J]. Signal Processing, 1993,32(3) :263 - 284.
  • 7Jones D L, Baraniuk R G. An adaptive optimal-kernel timefrequency representation [ J ]. IEEE Trans on Signal Processing, 1995,43(11) :2361 - 2371.
  • 8Rao P, Taylor F J. Estimation of the instantaneous frequency using the discrete Wigner distribution [ J ]. Electron Letters, 1990,26(9) : 246 - 248.
  • 9Mallat S, Zhang Z F. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993,41 (12) :3397 - 3415.
  • 10Huang N E, Shen Z, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ A ]. Proceedings of the Royal Society [ C ]. London: The Royal Society, 1998,454:903 - 955.

共引文献10

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部