期刊文献+

基于Laplace先验的Bayes压缩感知波达方向估计 被引量:3

Direction-of-arrival Estimation Using Laplace Prior Based on Bayes Compressive Sensing
下载PDF
导出
摘要 基于多任务贝叶斯压缩感知(BCS)理论,该文提出一种使用Laplace先验的目标到达角(DOA)估计算法。该算法利用阵元输出为观测值,将DOA估计转化为Laplace先验约束下的BCS求解稀疏信号问题,使用Laplace先验获得比传统BCS更好的稀疏性。该算法不需要信源个数的先验信息和进行特征值分解,能够适应相干信源场景,仿真结果表明该算法具有比传统BCS方法和经典MUSIC算法更好的DOA估计性能。 Based on the multi-task Bayes Compressive Sensing(BCS), a Direction-Of-Arrival(DOA) estimation strategy using Laplace prior is proposed. The DOA estimation is formulated as the reconstruction of sparse signal constrained by the Laplace prior through the BCS framework. The outputs of array sensors are directly employed as the observations, and the exploiting of Laplace prior leads to better spare property than the conventional BCS method. The proposed method needs not the prior information of the number of sources, needs not the eigenvalue decomposition and can work in the coherent signal scenario. The numerical experiments show that the proposed method has the better performance than the conventional BCS and MUSIC algorithm on the DOA estimation.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第4期817-823,共7页 Journal of Electronics & Information Technology
基金 山东省自然科学基金(ZR2014FQ003) 国家自然科学基金(61371181)资助课题
关键词 目标到达角估计 多任务 Bayes压缩感知 Laplace先验 Directions-Of-Arrival(DOA) estimation Multi-task Bayes Compressive Sensing(BCS) Laplace prior
  • 相关文献

参考文献16

  • 1Candes EJ, RombergJ, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Candes EJ and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 3EnderJ H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90: 1402-1414.
  • 4Bilik I. Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1754-1769.
  • 5Cotter S F. Multiple snapshot matching pursuit for direction of arrival(DOA) estimation[C]. Proceedings of 15th European Signal Processing Conference, Poznan, Poland, 2007: 247-25l.
  • 6Gretsistas A and Plumbley M. A multichannel spatial compressed sensing approach for direction of arrival estimation[C]. Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation, St Malo, France, 2010: 458-465.
  • 7GuJian-feng, Wei Ping, and Tai Heng-ming. Twodimensional DOA estimation by cross-correlation matrix stacking[J]. Circuits System and Signal Processing, 2011, 30(2): 339-353.
  • 8Gan Lu and Wang Xiao-qing. DOA estimation of coherently distributed sources based on block-sparse constraint[J]. IEICE Transactions on Communications, 2012, E95-B(7): 2472-2476.
  • 9王海涛,王俊.基于压缩感知的无源雷达超分辨DOA估计[J].电子与信息学报,2013,35(4):877-881. 被引量:17
  • 10吴小川,邓维波,杨强.基于CS-MUSIC算法的DOA估计[J].系统工程与电子技术,2013,35(9):1821-1824. 被引量:15

二级参考文献72

  • 1Cox H, Zeskind R M, and Owen M M. Robust adaptive beamforming[J]. IEEE Transactions on Acoustic, Speech and Signal Processing, 1987, 35(10): 1365-1376.
  • 2Chang L and Yeh C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas Propagation, 1992, 40(11): 1336-1347.
  • 3Feldman D and Griffiths L. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867-876.
  • 4Vorobyov S A, Gershman A B, and Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transtions on Signal Processing, 2003, 51(2): 313-324.
  • 5Li J, Stoica P, and Wang Z. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Proessing, 2003, 51(7): 1702-1715.
  • 6Li J, Stoica P, and Wang Z. Doubly constrained robust capon beamformer[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2407-2423.
  • 7Zhu L Y, Ser W, beamformers based Er M H, et al. on worst-case Robust adaptive optimization and constraints on magnitude response[J]. IEEE Transactions on Signal Proessing, 2009, 57(7): 2615-2628.
  • 8Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 9Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 10Baraniuk R G, Candes E J, Elad M, et al.. Applications of sparse representation and compressive sensing[J]. Proceedings of IEEE, 2010, 98(6): 906-909.

共引文献38

同被引文献36

  • 1Heras D B,Argüello F,and Quesada-Barriuso P.Exploring ELM-based spatial-spectral classification of hyperspectral images[J].International Journal of Remote Sensing,2014,35(2):401-423.
  • 2Zhao C,Li X,Ren J,et al..Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery[J].International Journal of Remote Sensing,2013,34(24):8669-8684.
  • 3Tan C,Samanta A,Jin X,et al..Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies[J].International Journal of Remote Sensing,2013,34(24):8789-8802.
  • 4Xie X,Li Y,Li R,et al..Hyperspectral characteristics and growth monitoring of rice (Oryza sativa) under asymmetric warming[J].International Journal of Remote Sensing,2013,34(23):8449-8462.
  • 5Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 6Candès E,Romberg J,and Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 7Provost J and Lesage F.The application of compressed sensing for photo-acoustic tomography[J].IEEE Transactions on Medical Imaging,2009,28(4):585-594.
  • 8Riccardo M,Giorao Q,Michele R,et al..A Bayesian analysis of compressive sensing data recovery in wireless sensor networks[C].International Conference on Ultra Modern Telecommunications&Workshops,St.Petersburg,2009:1-6.
  • 9Shu X and Ahuja N.Imaging via three-dimensional compressive sampling[C].Paper presented at the International Conference on Computer Vision (ICCV),Barcelona,ES,2011:439-446.
  • 10Yin J,Sun J,and Jia X.Sparse analysis based on generalized Gaussian model for spectrum recovery with compressed sensing theory[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(6):2752-2759.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部