期刊文献+

基于张量分解的互质阵MIMO雷达目标多参数估计方法 被引量:18

Co-prime MIMO Radar Multi-parameter Estimation Based on Tensor Decomposition
下载PDF
导出
摘要 该文提出了一种基于双基地互质阵列(CPA)多输入多输出(MIMO)雷达的多目标波离方向角(DOD)、波达方向角(DOA)和多普勒频率估计算法。收发阵列各由两个满足互质结构的稀疏均匀子线阵组成。时域的快拍序列同样由两个互质的稀疏均匀采样构成。算法利用张量因子分解得到分别包含DOD,DOA和多普勒频率信息的3个流形矩阵,再从中构造出具有范德蒙德矩阵结构的虚拟流形矩阵。为了提高估计精度,还提出了一种基于特征值分解的误差抑制算法,并通过旋转不变子空间算法(ESPRIT)求取各目标的3个待估参数。与传统算法相比,该算法通过构造均匀虚拟阵列和虚拟快拍提高参数估计性能,且不会产生模糊,避免了谱峰搜索和额外的配对过程。仿真实验验证了该算法有效性。 A novel algorithm for estimation of Direction Of Departure(DOD), Direction Of Arrival(DOA), and Doppler frequency based on bistatic MIMO radar with Co-Prime Array(CPA) is presented. The transmit and receive arrays are both composed of a pair of sparse uniform subarrays. Similarly, a pair of snapshot sequences with co-prime intervals constitutes the sampling of temporal. Three manifold matrices which contain multi-targets' DODs, DOAs and Doppler frequencies respectively are estimated through tensor decomposition. From which a group of Vandermonde matrices of virtual manifold are constructed. To improve the estimation accuracy, an error depressing algorithm based on eigenvalue decomposition is proposed. Finally, the above three parameters are estimated by an Estimation of Signal Parameters via Rotation Invariant Techniques(ESPRIT) algorithm. The proposed algorithm offers better performance through virtual array and virtual snapshot without parameter ambiguous. It requires neither peak searching nor pairing processes, and the simulation results are presented to verify the effectiveness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第4期933-938,共6页 Journal of Electronics & Information Technology
基金 国家部委基金 教育部博士点基金(20113219110018) 中国航天科技集团公司航天科技创新基金(CASC04-02) 国家自然科学基金(61302188) 江苏省自然科学基金(BK20131005)资助课题
关键词 双基地MIMO雷达 互质数对 张量分解 Swerling-I模型 Bistatic MIMO radar Co-prime pair Tensor decomposition Swerling-I model
  • 相关文献

参考文献15

  • 1Rabideau DJ and Parker P. Ubiquitous MIMO multifunction digital array radar[C]. Proceedings of the Thirty-seventh Asilomar Conference on Signals, Systems and Computers, California, USA, 2003: lO57-1064.
  • 2Kai Land Manikas A. Superresolution multitarget parameter estimation in MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3683-3693.
  • 3Gong Peng-cheng, Shao Zhen-hai, Tu Guang-peng, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94(3): 195-201.
  • 4Li L. Cramer-Rao bound for parameter estimation in narrowband bistatic MIMO radar[J]. Applied Mechanics and Materials, 2014, 56(2): 5034-5037.
  • 5Zhang Xiao-fei, Xu Ling-yun, Xu Lei, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): ll61-ll63.
  • 6Chen Duo-fang, Chen Bai-xiao, and Qin Guo-dong. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770-771.
  • 7ChenJin-li, Gu Hong, and Su Wei-min. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422-1423.
  • 8Chen Yuan-bing, Gu Hong, and Su Wei-min.Joint 4-D angle and doppler shift estimation via tensor decomposition for MIMO array[J]. IEEE Communications Letters, 2012, 16(6): 917-920.
  • 9Chen Chun-yang and Vaidyanathan P P. Minimum redundancy MIMO radars[C]. Proceedings of the IEEE International Symposium on Circuits and Systems, California, USA, 2008: 45-48.
  • 10Pal P and Vaidyanathan P P. Nested arrays: a novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181.

同被引文献97

  • 1刘聪锋,廖桂生.基于空域滤波的方向波数域测向测频新方法[J].电波科学学报,2010,25(1):60-65. 被引量:5
  • 2黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 3VASEGHI S and FRANYLING C. Restoration of old gramophone recordings[J]. AES Journal of the Audio Engineering Society, 1992, 40(10): 791-801.
  • 4COCCHI G and UNCINI A. Subbands audio signal recovering using neural nonlinear prediction[C]. Proceedings of the 2001 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, UT, USA, 2001: 1289-1292.
  • 5ACAR E, DUNLAVY D M, KOLDA T G, et al. Scalabletensor factorizations with missing data[C]. Proceedings of the 10th SIAM International Conference on Data Mining, Columbus, OH, United States, 2010: 701-712.
  • 6ZHAO Qibin, ZHANG Liqing, and CICHOCKI A. Bayesian CP factorization of incomplete tensors with automatic rank determination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1751-1763. doi: 10.1109/TPAMI.2015.2392756.
  • 7TAN Huachun, WU Yuankai, FENG Guangdong, et al. A new traffic prediction method based on dynamic tensor completion[J]. Procedia-Social and Behavioral Sciences, 2013, 96(8): 2431-2442. doi: 10.1016/j.sbspro.2013.08.272.
  • 8LIU Yuanyuan and SHANG Fanhua. An efficient matrix factorization method for tensor completion[J]. IEEE Signal Processing Letters, 2013, 20(4): 307-310. doi:10.1109/LSP. 2013.2245416.
  • 9CICHOCKI A, ZDUNEK R, PHAN A H, et al. Nonnegative matrix and tensor factorizations[M]. Chichester, WS: John Wiley & Sons, 2009: 28-31.
  • 10LERMAN G and ZHANG T. Robust recovery of multiple subspaces by geometric : minimization[J]. Annals ofStatistics, 2011, 39(5): 2686-2715. doi: 10.1214/11-AOS914.

引证文献18

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部