期刊文献+

基于粒子群优化与SVR-ADLA算法的MIMO系统识别研究 被引量:1

Identification of MIMO Systems based on particle swarm optimization,support vector regression and annealing dynamic learning
下载PDF
导出
摘要 针对现有基于径向基函数(RBF)网络对多输入多输出(MIMO)系统识别中存在收敛速度慢、系统识别稳定性不高的问题,提出了一种新的MIMO系统识别方法:采用支持向量回归(SVR)算法建立RBF网络初始化结构,确定初始化网络参数;采用退火动力学习(ADL)算法对系统识别网络进行训练,在训练过程中采用粒子群优化(PSO)迭代算法选出最佳学习率组合,使识别网络实现对MIMO系统的识别。对一个两输入输出系统进行了识别仿真,仿真结果表明,用该识别方法重建的识别系统性能优于目前RBF网络参数优化过程中常用的最小平方算法或梯度下降法算法。RBF网络识别系统易于实现,在MIMO系统识别中具有广泛的应用前景。 The identification of a multiple-input multiple-out-put (MIMO) system based on a radial basis function (RBF) network was studied, and a new identification method was put forward to solve the problems of slow conver- gence rate and low identification stability in current identification. The new method uses the support vector regres- sion (SVR) algorithm to establish the initialized structure of a RBF network and set the parameters of the initialized network, and then adopts the annealing dynamic learning (ADL) algorithm to train the system' s identification net- work, and in the training, uses the iteration of particle swarm optimization (PSO) to select the best learning rate combination to make the MIMO system recognized by the identification network. The identification simulation for a two-input and two-output, system was conducted, and the simulation results showed that the system identification performance of the proposed method was better than the least square algorithm and the gradient descent algorithm frequently-used in the current process of optimizing RBF network parameters. The identification system based on a RBF network is easy to implement and it has a wide application prospect in MIMO system identification.
出处 《高技术通讯》 CAS CSCD 北大核心 2015年第1期24-30,共7页 Chinese High Technology Letters
基金 国家自然科学基金(61072070 61301179) 教育部博士学科点基金(20110203110011) 教育部基础科研业务费(72124338) 陕西省自然基金重点项目(2012JZ8002) 高等学校学科创新引智计划(B08038)资助项目
关键词 多输入多输出(MIMO)系统识别 径向基函数(RBF)网络 支持向量回归(SVR) 退火动力学习(ADL) 粒子群优化(PSO) multiple-input multiple-out-put (MIMO) system identification, radial basis function (RBF) net- work, support vector regression (SVR), annealing dynamic learning ( ADL), particle swarm optimization (PSO)
  • 相关文献

参考文献4

二级参考文献58

  • 1王永民,苟彦新,孟相如.基于Kalman滤波的自适应MIMO信道估计[J].空军工程大学学报(自然科学版),2004,5(6):34-39. 被引量:5
  • 2王嵩,刘济林,薛全,陈国斌.H.264/AVC中基于全零块检测的运动估计快速算法[J].电路与系统学报,2005,10(1):10-14. 被引量:11
  • 3金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:89
  • 4于颖,李永生,於孝春,胡毅,陈立苏.波纹管的结构优化设计[J].压力容器,2005,22(12):22-24. 被引量:24
  • 5PULIDO G T, COELLO C A. A constraint-handling mechanism for particle swarm optimization [C]// Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, June 19-23 2004, Institute of Electrical and Electronics Engineers Inc., New York, United States, 2004 2: 1 396-1 403.
  • 6HE S, PREMPAIN E, WU Q H. An improved particle swarm optimizer for mechanical design optimization problems[J]. Engineering Optimization, 2004, 36 (5): 585-605.
  • 7KITAYAMA S, YASUDA K. A method for mixed integer programming problems by particle swarm optimization[J]. Electrical Engineering in Japan, 2006, 157 (2): 40-49.
  • 8SUN Jun, LIU Jing, XU Wenbo. Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems[J]. International Journal of Computer Mathematics, Distributed Algorithms in Science and Engineering, 2007, 84 (2): 261-272.
  • 9HESTENES M R. Multiplier and gradient methods[J]. Journal of Optimization Theory and Application, 1969, 4(5): 303-320.
  • 10POWELL M J D. Optimization[M]. London: Academic Press, 1969.

共引文献16

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部