期刊文献+

基于TCM的多分类算法研究

Multi-classification algorithm research based on TCM
下载PDF
导出
摘要 基于算法随机性理论提出的直推式置信机器能够给出预测的可靠性,但其多用于解决两类识别问题。扩展了置信机器,利用了正反类的思想,在识别时比较多个P值来确定测试样本的分类,使其很容易一次性应用于多分类识别问题。为对扩展后的模型性能进行评估,将其应用于经典的模式识别-人脸识别。实验结果表明,扩展后的置信机器具有良好的分类性能,当每类训练集样本增加到6个时,识别率已高于96%。 Transductive confidence machine is method based on random algorithm theory. It can estimate the reliability of a prediction but has mainly been applied binary classification problems. This paper extends the transductive confidence machine using the idea of positive and negative classes. The extended Transductive Confidence Machine(TCM)does classification by comparing multiple P values and can be applied to multi-class problems. The new algorithm is applied to face recognition and achieves a recognition rate of 96%even when each class contains only 6 training samples.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第8期134-137,共4页 Computer Engineering and Applications
基金 国家科技支撑计划项目(No.2012BAF12B20) 国家自然科学基金(No.60901080)
关键词 置信机器 多分类识别 正反类 人脸识别 Transductive Confidence Machine(TCM) recognition of multi-classification positive and negative classes face recognition
  • 相关文献

参考文献15

  • 1西奥多里德斯.国外计算机科学教材系列:模式识别[M].李晶皎,译.北京:电子工业出版社,2006.
  • 2Gelman A,Carlin J B,Stern H S,et al.Bayesian dataanalysis[M].London:Chapman & Hall,1995.
  • 3Melluish T,Saunders C,Nouretdionv I,et al.Comparingthe Bayes and typicalness frame-works[C]//Proceedings ofEuropean Conference on Machine Learning,2001,2167:360-371.
  • 4Proedrou K,Nouretdinov I,Vovk V,et al.Transductiveconfidence machines for pattern recognition[C]//Proceedingsof European Conference on Machine Learning,2002:381-390.
  • 5Zhdanov F,Vovk V,Burford B,et al.Online prediction ofovarian cancer[C]//Proceedings of Artificial Intelligencein Medicine Lecture Notes in Computer Science,2009:375-379.
  • 6李洋,方滨兴,郭莉,田志宏,张永铮,姜伟.基于TCM-KNN和遗传算法的网络异常检测技术[J].通信学报,2007,28(12):48-52. 被引量:10
  • 7Gammerman A,Vovk V.Prediction algorithms and confidencemeasures based on algorithmic randomness theory[J].Theoretical Computer Science,2002,287(1):209-217.
  • 8邱德红,陈传波,金先级.基于算法随机性理论和奇异描述的置信学习机器[J].计算机研究与发展,2004,41(9):1586-1592. 被引量:10
  • 9Gammerman A,Vovk V.Hedging predictions in machinelearning[J].The Computer Journal,2007,50(2):151-163.
  • 10Cha S H.Comprehensive survey on distance/similaritymeasures between probability density functions[J].InternationalJournal of Mathematical Models and Methodsin Applied Sciences,2007(4):300-307.

二级参考文献74

  • 1邹旭楷.汉字/字符串编辑距离和编辑路径的有效求解技术[J].计算机研究与发展,1996,33(8):574-580. 被引量:5
  • 2X F Lin, X Q Ding, M Chen, et al. Adaptive confidence transform based classifier combination for Chinese character recognition. Pattern Recognition Letters, 1998, 19(10): 975~988
  • 3T K Ho, J J Hull, S N Srihari. Decision combination in multiple classifier systems. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994, 16(1): 66~75
  • 4A Gelman, J B Carlin, H S Stern, et al. Bayesian Data Analysis. London: Chapman & Hall, 1995
  • 5T Melluish, C Saunders, I Nouretdinov, et al. Comparing the Bayes and typicalness frameworks. The 12th European Conf on Machine Learning/5th European Conf on Principles and Practice of Knowledge Discovery in Databases. Freiburg, Germany, 2001
  • 6M D Richard, R P Lippmann. Neural network classifiers estimate Bayesian a posterior probabilities. Neural Computation, 1991, 3(4): 461~483
  • 7C L Liu, M Nakagawa. Precise candidate selection for large character set recognition by confidence evaluation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(6): 636~642
  • 8M Li, Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. New York: Springer-Verlag, 1997
  • 9A N Kolmogorov. Three approaches to the quantitative definition of information. Problems Inform Transmission, 1965, 1: 1~7
  • 10V Vovk, A Gammerman, C Saunders. Machine-learning applications of algorithmic randomness. The 16th Int'l Conf on Machine Learning, Bled, Slovenia, 1999

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部