期刊文献+

特征离散点计算在手写文本行分割中的应用 被引量:3

Using feature discrete-point computing in handwritten documents line segmentation
下载PDF
导出
摘要 将图像分析实践中的经验知识与粒计算的基本思想相结合,总结形成了特征离散点计算,并将其应用于自然手写汉字文本行分割当中。在特征离散点计算的结构化问题求解框架下,提出了一种反馈式分列行投影文本行分割方法,分为特征离散点选择、特征离散点采样与优化、特征离散点编组与反馈以及行边缘优化四个环节。该方法在哈尔滨工业大学多人手写数据库上取得了相对以往算法较好的实验结果,同时分割速度较快。 Combined the empirical knowledge of image analysis with the concept of granular computing, feature discrete-point computing is summarized and developed in this paper, which is used in the line segmentation of natural handwritten Chinese documents. According to the structured problem solving framework of the feature discrete-point computing, a line segmentation method based on feedback row projection with sub-block is proposed, which are divided into four stages, including feature discrete-point’s selecting, sampling and optimizing, grouping and feedback, and line-edge optimizing. This method achieves better experimental results on Harbin Institute of Technology-Multiple Writers Database with faster segmenting speed, comparing with existing methods.
作者 朱宗晓 杨兵
出处 《计算机工程与应用》 CSCD 北大核心 2015年第8期148-152,204,共6页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.60975021) 中央高校基本科研业务费专项资金项目(No.CZY14006)
关键词 特征离散点计算 行分割 反馈式分列行投影 feature discrete-point computing line segmentation feedback row projection with sub-block
  • 相关文献

参考文献16

  • 1Wshah S,Kumar G,Govindaraju V.Statistical script independentword spotting in offline handwritten documents[J].Pattern Recognition,2014,47(3):1039-1050.
  • 2Huang L,Yin F,Chen Q H,et al.Keyword spotting inunconstrained handwritten Chinese documents using contextualword model[J].Image and Vision Computing,2013,31(12):958-968.
  • 3Hassner T,Wolf L,Dershowitz N.OCR-free transcript alignment[C]//2013 12th International Conference on DocumentAnalysis and Recognition(ICDAR),2013:1310-1314.
  • 4倪恩志,蒋旻隽,周昌乐.古代汉字文献切分研究[J].计算机工程与应用,2013,49(2):29-33. 被引量:8
  • 5Papavassiliou V,Stafylakis T,Katsouros V,et al.Handwrittendocument image segmentation into text lines andwords[J].Pattern Recognition,2010,43(1):369-377.
  • 6Tong L,Peng Q,Li Y,et al.Document image skew correctionmethod based on characteristic sample point detectionand hough transform[C]//Proceedings of the 9th InternationalSymposium on Linear Drives for Industry Applications.Berlin Heidelberg:Springer,2014:759-767.
  • 7黄亮,殷飞,陈庆虎.基于图聚类的脱机手写文档图像文本行分割[J].华中科技大学学报(自然科学版),2014,42(3):33-36. 被引量:3
  • 8Chen J,Lopresti D.Model-based ruling line detection innoisy handwritten documents[J].Pattern Recognition Letters,2014,35:34-45.
  • 9Koo H I,Cho N I.Text-line extraction in handwrittenChinese documents based on an energy minimizationframework[J].IEEE Transactions on Image Processing,2012,21(3):1169-1175.
  • 10Saabni R,Asi A,El-Sana J.Text line extraction for historicaldocument images[J].Pattern Recognition Letters,2014,35:23-33.

二级参考文献36

  • 1张志佳,黄莎白,史泽林.一种改进的势函数聚类多阈值图像分割算法[J].光电工程,2005,32(8):64-68. 被引量:7
  • 2韩智,刘昌平,殷绪成.手写中文信封的地址行字符切分算法[J].中文信息学报,2006,20(1):85-90. 被引量:3
  • 3蒋焰,丁晓青,任征.基于地址结构匹配的手写中文地址的切分与识别[J].清华大学学报(自然科学版),2006,46(7):1235-1238. 被引量:3
  • 4Chellapilla K,Larson K, Simard P,et al.Computers beat humans at single character recognition in reading-based Human Interaction Proofs[C]//Proceedings of the 2nd Con- ference on Email and Anti-Spam,2005.
  • 5Huang Shihyu,Lee Yeuankuen,Bell G,et al.A projection- based segmentation algorithm for breaking MSN and YAHOO CAPTCHAs[C]//Proceedings of the World Con- gress on Engineering,2008.
  • 6Yan J,E1 Ahmad A S.Breaking visual CAPTCHAs with naive pattern recognition algorithms[C]//Proceedings of 23rd Annual Computer Security Applications Conference, 2007: 279-291.
  • 7Chellapilla K, Simard P Y.Using machine learning to break visual hips[C]//Proceedings of Conference on Neural Information Processing Systems, 2004.
  • 8Bursztein E, Martin M, Mitchell J C.Text-based CAPTCHA strengths and weaknesses[C]//Proceedings of ACM Com- puter and Communication Security, 2011.
  • 9Congedo G,D imauro G,Impedovo S,et al.Segmentation of numeric strings[C]//Proceedings of the 3rd International Conference on Document Analysis and Recognition, 1995. 1038-1041.
  • 10Wang Xiujuan, Zheng Kangfeng, Guo Jun.Inertial and big drop fall algorithm[J].Intemational Journal of Information Technology, 2006,12(4) ~ 39-48.

共引文献41

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部