期刊文献+

基于日志的协同图像自动标注 被引量:3

Log-based collaborative automatic image annotation
下载PDF
导出
摘要 反馈日志隐含的图像语义信息有助于图像自动标注,但日志数据中存在的噪声、片面性等问题制约了其作用,故提出基于日志的协同图像自动标注算法。根据日志获取的特点,采用增量关联规则挖掘处理日志信息去除其噪声,利用协同滤波思想扩展图像标注词数量,利用Word Net得到标注词间关系,并结合图像底层特征利用混合概率模型实现图像自动标注。在Corel5K和互联网数据集上的实验表明:该算法降低了日志噪声及片面性所带来的影响,提高了图像自动标注效率和质量。 The potential image semantic information in feedback logs helps to improve the quality of image automatic anno-tation, but the noisy and one-sidedness of the log restrict its function. So it proposes a log-based collaborative automatic image annotation algorithm. It uses incremental association rule to mine log messages according to its characteristics to remove the noisy data and expand the amount of image annotation words with the thought of collaborative filtering. Com-bining the relationship of the annotation words from the WordNet and the low-level image features, it can accomplish image automatic annotation with adoption of hybrid probabilistic model. The experimental results based on Corel5K and Internet image set show that the proposed algorithm can reduce the negative effects from noisy and one-sidedness of the log data, and improve the performance and efficiency of the automatic image annotation.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第8期178-182,194,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61173130)
关键词 协同滤波 混合概率模型 图像自动标注 增量关联规则 日志 collaborative filtering hybrid probabilistic model image automatic annotation incremental association rules log
  • 相关文献

参考文献2

二级参考文献6

  • 1Duygulu E Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary[C]//Proc. of European Conference on Computer Vision. [S. l.]: IEEE Press, 2002.
  • 2Jeon J. Automatic Image Annotation and Retrieval Using Cross-media Relevance Models[C]//Proc. of the Int'l ACM SIGIR'03. [S. l.]: ACM Press, 2003.
  • 3Lavrenko V. A Model for Learning the Semantics of Pictures[C]// Proc. of Int'l Conf. on Advances in Neutral Information Processing Systems. [S. l.]: IEEE Press, 2003.
  • 4Manmatha R. Multiple Bernoulli Relevance Models for Image and Video Annotation[C]//Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 2004.
  • 5Qiu Guoping. Indexing Chromatic and Achromatic Patterns for Content-based Colour Image Retrieval[J]. Pattern Recognition, 2002, 35(8): 1675-1686.
  • 6Agrawal R. Mining Association Rules Between Sets of Items in Large Database[C]. Washington, DC: Proceedings of ACM SIGMOD Conference on Management of Data, 1993, 5:207-216.

共引文献12

同被引文献23

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部