期刊文献+

在大肠杆菌中利用SCLM系统进行高效率λ-Red基因敲除/整合的新策略 被引量:3

Novel efficient strategy for λ-Red-mediated gene knock-out/in in Escherichia coli using SCLM system
原文传递
导出
摘要 【目的】传统采用的λ-Red体系在大肠杆菌染色体上进行基因敲除/整合操作时存在操作繁琐、假阳性率高、多基因连续敲除/整合不稳定等问题。本研究基于上述问题建立一种便于基因构建、高筛选效率(100%)、具有统一技术步骤的λ-Red敲除/整合系统,为提高基因功能研究和代谢工程改造工作效率奠定基础。【方法】采用新的p SC101衍生复制起始位点消除假阳性;利用高拷贝数质粒和多克隆位点实现快速遗传构建操作;采用Cre/Lox P抗性消除位点便于多基因连续整合。选择一系列初级代谢重要基因靶点进行敲除/整合。【结果】构建了一套新型λ-Red质粒系统(SC101-Cre-Lox P-MCS,SCLM系统)。打靶片段经电转化受体细胞后在双抗性平板上筛选阳性克隆,基因敲除/整合的效率均可以达到100%。【结论】新建立的基因敲除与整合方法提高了基因重组效率,大幅度减少了相关操作的步骤,缩短了研究周期。该方法的建立为基因功能研究和构建新遗传特性的工程菌株提供了有力的工具。 [Objective] Generally, traditional λ-Red recombination system possessed low efficiency, complicated processes, inconsistent protocols, high false-positive rate and instability for multi-gene-knock-out/knock-in during manipulation on chromosome gene of Escherichia coli. In order to solve these problems, this study established a high efficiency and standard strategy of gene knock-out/in. [Methods] Based on λ-Red recombination system, new template plasmids were developed. A p SC101 derivative replication origin was used to diminish the false-positive problem. Convenient genetic manipulation was achieved by using high-copy-number plasmid and multiple cloning sites. New genetic marker was used to facilitate continuous multi-gene knock-out/in. A series of key targets within primary metabolite networks of E. coli were then knocked out/in using our methods. [Results] New λ-Red plasmids system, named SC101-Cre-Lox P-MCS system, was developed. The positive colonies were selected on two-resistance plate and 100% positive rate was achieved. [Conclusion] The efficiency of gene recombination was improved by the new method of gene knock-out/knock-in. This new system provides a rapid genetic manipulation. Our new strategy provides important insights into gene function research and genetic engineering bacteria with new genetic characteristics.
出处 《微生物学通报》 CAS CSCD 北大核心 2015年第4期699-711,共13页 Microbiology China
基金 国家973计划项目(No.2012CB721105)
关键词 λ-Red重组技术 大肠杆菌 基因敲除与整合 模板质粒 筛选效率 λ-Red recombination system Escherichia coli Gene knock-out/knock-in Template plasmids Screen efficiency
  • 相关文献

参考文献21

  • 1Bailey JE. Toward a science of metabolic engineering[J]. Science, 1991, 252(5013): 1668-1674.
  • 2Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 252(5013): 1675-1681.
  • 3李寅,曹竹安.微生物代谢工程:绘制细胞工厂的蓝图[J].化工学报,2004,55(10):1573-1580. 被引量:25
  • 4Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J]. Nature Chemical Biology, 2012, 8(6): 536-546.
  • 5Tomoya B, Takeshi A, Miki H, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection[J]. Molecular System Biology, 2006, 2: 1-11.
  • 6Huruma NT, Bruno MG. Use of lambda Red-mediated recombineering and Cre/Lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli[J]. Federation of European Microbiological Societies Microbiology Letters, 2011, 325(2): 140-147.
  • 7Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.
  • 8Murphy KC. Lambda Gam protein inhibits the helicase and chi O’Stimulated recombination activities of Escherichia coli RecBCD enzyme[J]. Journal of Bacteriology, 1991, 173(18): 5808-5821.
  • 9Poteete AR. What makes the bacteriophage lambda Red system useful for genetic engineering: molecular mechanism and biological function[J]. Federation of European Microbiological Societies Microbiology Letters, 2001, 201(1): 9-14.
  • 10David IF, Donald LC. Bacteriophage lambda: alive and well and still doing its thing[J]. Current Opinion in Microbiology, 2001, 4(2): 201-207.

二级参考文献28

  • 1Herrera S. Industrial Biotechnology-a Chance at Redemption. Nat.Biotechnol., 2004,22:671-675
  • 2Bailey J E. Toward a Science of Metabolic Engineering.Science,1991,252:1668-1675
  • 3http://www.metabolicengineering.gov/
  • 4Gill R T. Enabling Inverse Metabolic Engineering Through Genomics.Curr.Opin.Biotechnol.,2003,14:484-490
  • 5Nielsen J. Metabolic Engineering.Appl.Microbiol.Biotechnol.,2001,55:263-283
  • 6de Vos W M, Hugenholtz J. Engineering Metabolic Highways in Lactococci and Other Lactic Acid Bacteria.Trends Biotechnol., 2004,22:72-79
  • 7Storici F, Lewis L K, Resnick M A. In vivo Site Directed Mutagenesis Using Oligonucleotides.Nature Biotechnol.,2001,19: 773-776
  • 8Hugenholtz J, Sybesma W, Groot M N, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard J C, Eggink G, Smid E J, Savoy G, Sesma F, Jansen T, Hols P, Kleerebezem M. Metabolic Engineering of Lactic Acid Bacteria for the Production of Nutraceuticals.Anto
  • 9Nielsen J. It Is All about Metabolic Fluxes.J.Bacteriol, 2003,185:7031-7035
  • 10Sauer U. High-throughput Phenomics:Experimental Methods for Mapping Fluxomes.Curr.Opin.Biotechnol.,2004,15: 58-63

共引文献34

同被引文献30

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部