期刊文献+

吲哚作为细菌细胞间信号分子的研究进展 被引量:10

Progress on indole: an intercellular signal molecule in microbial communities
原文传递
导出
摘要 吲哚广泛存在于自然界,目前已知超过145种革兰氏阳性和阴性细菌能产生吲哚,其中包括许多病原菌。随着细菌密度感应系统及其信号分子作用机制研究的深入,吲哚已被证实是肠道病原菌如致病性大肠杆菌、迟缓爱德华氏菌、霍乱弧菌等一类细胞间重要的信号分子,并参与细菌的多种生理活动,如毒力、抗药性、生物膜形成、运动性、质粒稳定性、抗酸性、孢子产生等。更为重要的是,吲哚及其衍生物还参与协调菌群竞争,有益于人体肠道菌群平衡和免疫系统。本文在吲哚作为细胞间信号分子参与迟缓爱德华氏菌的毒力、抗药性、生物膜形成和运动性的研究基础上,对近年来吲哚作为细菌细胞间信号分子的研究进展进行了综述。随着吲哚作用机制的进一步揭示,将有助于新型抗病原菌感染策略的研发和生物工程方面的应用。 Indole is widespread in the natural environment, as more than 145 Gram-positive and Gram-negative bacteria can produce indole, including many pathogenic bacteria. More and more mechanism studies have revealed that indole acts as an important intercellular signal molecule in some enteric pathogens such as Escherichia coli, Edwardsiella tarda and Vibrio cholera, and controls diverse aspects of bacterial physiology, such as virulence, drug resistance, biofilm formation, motility, plasmid stability, acid resistance and spore formation. More importantly, indole and its derivatives regulate competition of microbial consortia and benefit digestive and immune system in human. We discuss our current study on the role of indole signaling in Edwardsiella tarda and review the progress of study on indole signaling in diverse bacterial species. Thus, better understanding of the indole signaling mechanism will help to develop new anti-infection strategies and their biotechnology applications.
出处 《微生物学通报》 CAS CSCD 北大核心 2015年第4期736-748,共13页 Microbiology China
基金 国家自然科学基金项目(No.31072241) 宁波市农村科技创新创业资金项目(No.2013C910022) 教育部留学回国人员科研启动基金项目(No.教外司留[2012]940号)
关键词 吲哚 细胞间信号分子 细菌生理活动 Indole Signaling molecule Bacterial physiology
  • 相关文献

参考文献95

  • 1Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269-275.
  • 2Han Y, Li X, Qi Z, et al. Detection of different quorum sensing signal molecules in a virulent Edwardsiella tarda strain LTB-4[J]. Journal of Applied Microbiology, 2010, 108(1): 139-147.
  • 3Yang Q, Han Y, Zhang XH. Detection of quorum sensing signal molecules in the family Vibrionaceae[J]. Journal of Applied Microbiology, 2011, 110(6): 1438-1448.
  • 4Kuipers OP, de Ruyter PGGA, Kleerebezem M, et al. Quorum sensing-controlled gene expression in lactic acid bacteria[J]. Journal of Biotechnology, 1998, 64(1): 15-21.
  • 5Whistler CA, Pierson III LS. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA[J]. Journal of Bacteriology, 2003, 185(13): 3718-3725.
  • 6Eberhard A, Burlingame AL, Eberhard C, et al. Structural identification of autoinducer of Photobacterium fischeri luciferase[J]. Biochemistry, 1981, 20(9): 2444-2449.
  • 7Zhang L, Murphy PJ, Kerr A, et al. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones[J]. Nature, 1993, 362(6419): 446-448.
  • 8Bodman von SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria[J]. Annual Review of Phytopathology, 2003, 41(1): 455-482.
  • 9Wisniewski-Dyé F, Downie JA. Quorum-sensing in Rhizobium[J]. Antonie Van Leeuwenhoek, 2002, 81(1/4): 397-407.
  • 10Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae[J]. Developmental Cell, 2003, 5(4): 647-656.

同被引文献100

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部