摘要
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.
基金
United Arab Emirates University through NRF grant, 2011