期刊文献+

基于特征的全船焊接工时聚类分析 被引量:2

Clustering analysis of welding man-hours based on characteristics of shipbuilding
下载PDF
导出
摘要 以某型船全船焊接信息为样本,首先验证了数据样本服从对数正态分布;再以距离作为度量标准,对焊接信息进行基于不同距离测量方法的聚类分析,并重点对比平方欧氏距离和夹角余弦距离的聚类树形图,得出全船焊接信息合理的聚类数目;最后对每个类进行物理信息的解释,得到完整实用的基于特征的全船焊接工时估算标准,为新型船经济性论证及方案选型提供快捷、可靠的依据。 Taken a certain type of ship welding information as the sample. Firstly,to verify the sample data obeys the lognormal distribution; secondly,with distance as a metric,to cluster the welding information as different distance measurement method,and compare the results of clustering tree between the squared euclidean distance and the cosine distance,then to get the reasonable number of welding clustering; finally,to explain the physical information of each cluster results,the whole ship welding man-hour estimate standard based on the characteristics had been measured,and they would provide fast,reliable basis for the selection of new ship economic demonstration and scheme. Specific ideas are that,firstly descriptive statistical analysis of welding information by the data mining technology, including exploring analysis,Q-Q distribution test,to get the distribution of the sample data; secondly based on the welding man-hours quota standard,according to the weld work information of operation area and dispatch list description,to do cluster analysis by different distance measurement method; thirdly to compare the different clustering tree,get the very clustering scheme that really reflect the physical information of ship welding characteristics; finally,date process each characteristics clusters,obtain the man-hour weight of this cluster, and form a complete and practical ship welding man-hour estimate standard based on manufacture characteristics.
机构地区 海军装备研究院
出处 《舰船科学技术》 北大核心 2015年第2期111-115,共5页 Ship Science and Technology
关键词 焊接 工时 距离 聚类 welding man-hour distance clustering
  • 相关文献

参考文献2

二级参考文献56

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2宗培,曹雷,邵国良,彭飞.焊接结构质量的主成分分析[J].机械工程学报,2005,41(5):65-68. 被引量:3
  • 3刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 4钱云涛,谢维信.一种由模糊逻辑神经元网络实现的聚类分析方法[J].西安电子科技大学学报,1995,22(1):1-7. 被引量:12
  • 5钱云涛,谢维信.聚类神经网络的通用设计方法[J].西安电子科技大学学报,1997,24(1):15-21. 被引量:3
  • 6Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. of the 2nd ACM SIGKDD, Portland, 1996:226 - 231.
  • 7Sander J, Ester M, Kriegel H P, Xu X. Denslty-based clustering in spatial databases: the algorithm GDBSCAN and its applications.Data Mining and Knowledge Discovery, 1998, 2(2): 169 - 194.
  • 8Ankerst M, Breunig M, Kfiegel H P, Sander J. OPTICS: Ordering points to identify clustering structure. In Proc. of the ACM SIGMOD Conference, Philadelphia, PA, 1999:49 - 60.
  • 9Xu X, Ester M, Kiegel H P, Sander J. A distribution-based clustering algorithm for mining in large spatial databases. In Proc.of the 14th ICDE, Orlando, FL, 1998:324 - 331.
  • 10Hinneburg A, Keim D. An efficient approach to clustering large multimedia databases with noise. In Proe. of the 40th ACMSIGKDD, New York, NY, 1998:58 - 65.

共引文献66

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部