期刊文献+

一类含Hardy位势的超线性p-Laplace方程解的存在性

The Existence of Solutions for a Class of Super Linear p-Laplace Elliptic Equations Involving Hardy Potential
下载PDF
导出
摘要 微分方程中的变分方法是将微分方程的求解问题转化为在一个恰当的Banach空间求相应泛函的临界点问题.为此,讨论了一类超线性p-Laplace方程,在假设方程不满足Ambrosetti-Rabinowitz(AR)条件的情况下,首先得到方程所对应泛函I的一个有界(PS)序列,进一步利用山路引理和(PS)条件,证明了该方程非平凡解的存在性. Variational method of the differential equation is transformed into a question of finding the critical points of corresponding function in an appropriate Banach space.In this paper,we get a bounded(PS) sequence of the corresponding functional I,and the existence of trivial solutions for equation of superlinear p-Laplace elliptic equation without(AR) condition is studied with the help of using a variant version of the Mountain Pass Theorem and PS condition.
机构地区 吕梁学院数学系
出处 《渭南师范学院学报》 2015年第6期20-24,共5页 Journal of Weinan Normal University
基金 吕梁学院自然科学基金项目:函数图像在瓷砖图案设计中的应用(ZRXN201302)
关键词 椭圆方程 HARDY位势 山路引理 (PS)条件 elliptic equations Hardy potential Mountain Pass Theorem PS condition
  • 相关文献

参考文献4

二级参考文献15

  • 1SHEN Yaotian YAO Yangxin HEN Zhihui.On a nonlinear elliptic problem with critical potential in R^2[J].Science China Mathematics,2004,47(5):741-755. 被引量:6
  • 2谢朝东.平面中含Hardy位势临界参数的非线性椭圆型方程[J].应用数学学报,2006,29(6):1017-1023. 被引量:5
  • 3Silva E A B, Xavier M S. Multiplicity of solutions for quaslinear elliptic problem involving critical Sobolev exponents [J]. Ann Inst H Poincare Anal Non Lineaire, 2003, 20: 341-358.
  • 4Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving eritieal Sobolev and Hardy exponents [J]. Trans Amer Math Soc, 2000, 352: 5703-5743.
  • 5Smets D. A concentration-compactness lemma with applications to singular eigenvalue problems [J]. J Funct Anal, 1999, 167: 463-480.
  • 6Willem M. Minimax theorems [M]. Boston: Birkhauser, 1996.
  • 7Brezis H,Vazquez J L.Blow-up solutions of some nolinear elliptic problem[J].Revista Mat Univ Complntense Madrid,1997(10):443-469.
  • 8Vazquez J L,Zuazna E.The Hardy inequality and the asymptotic behavior of the Heat equation with an inverse-square potential[J].J Funct Analysis,2000,173:103-153.
  • 9Gazzola F,Grunau H F,Mitidieri E.Hardy inequalities with optimal constants and remainders[J].Trans Amer Math Soc,2004(6):2168-2419.
  • 10Tertikas A,Zographopolous N B.Best constants in the Hardy-Rellich inequalities and related improvements[J].Advances in Mathematics,2007,209:407-459.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部