期刊文献+

基于Aspen Plus和NSGA-Ⅱ的隔壁塔多目标优化研究 被引量:16

Multi-Objective Optimization of Dividing Wall Columns with Aspen Plus and NSGA-Ⅱ
下载PDF
导出
摘要 以年总操作费用(TAC)和再沸器负荷为目标,提出了基于遗传算法NSGA-Ⅱ的优化方法,并将该方法应用于BTX分离隔壁塔的优化设计。首先应用Aspen Plus软件建立了BTX分离工艺的隔壁塔Radfrac两塔模型,并在Matlab平台上,通过MAP接口工具箱实现Matlab对Aspen Plus的操作与控制,同时Matlab调用NSGA-Ⅱ进行优化,完成种群大小为600、遗传代数为28的模拟过程,得到了10组Pareto解。研究表明,对于Pareto解分布,气相分配量βg、液相分配量βL、侧线抽出位置NS和液相分配位置NL基本不变,进料位置NF、预分馏塔板Nj和主塔板数Ni存在一定的线性关系。 An optimized method was used to evaluate the performance of dividing wall columns in BTX separation with multi-objective genetic algorithm to minimize the TAC and Heat duty. A two-column Radfrac model was established for the separation of BTX by Aspen Plus software. Matlab can operate and control Aspen Plus using MAP and it can use NSGA-II for optimization. Ten Pareto fronts were obtained with population of six hundred and generation of twenty-eight. The results show that interconnection vapor flow ?g, interconnection liquid flow ?L, stage of side product NS and stage of interconnection liquid NL are relatively stable on the base of distribution of Pareto front. However, there is a linear relationship between the number of the stages of prefractionator and that of the main column. The feed stage has a linear relationship with the prefractionator stage numbers.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第2期400-406,共7页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(21276279) 中央高校基本科研业务费专项资金资助(12CX04026A) 山东省优秀中青年科学家科研奖励基金(BS2014NJ010)
关键词 隔壁塔 多目标优化 NSGA-Ⅱ ASPEN PLUS dividing wall column multi-objective optimization NSGA-II Aspen Plus
  • 相关文献

参考文献10

  • 1Yildirim 0, Kiss A A, Kenig E Y. Dividing wall columns chemical process industry: a review on current activities [J]. Sep Pur Tech, 2011, 80(3): 403-417.
  • 2Dejanovic I, Matijasevic L, Olujic Z. Dividing wall column-A breakthrough towards sustainable distilling [J]. Chem Eng Pro, 2010, 49(6): 559-580.
  • 3Asprion N, Kaibel G: Dividing wall columns: Fundamentals and recent advances [J]. Chem Eng Pro, 2010, 49(2): 139-146.
  • 4Schutz M, Stewart D, Harris J M, et aL Reduce the costs with dividing-wall columns [J]. Chem Eng Pro, 2002, 98(5): 64-71.
  • 5Proios P, Pistikopoulos E N. Generalized modular framework for the representation and synthesis of complex distillation column sequences [J]. Ind Eng Chem Res, 2005, 44(13): 4656-4675.
  • 6Vaca M, Monroy-Loperena R, Jimnez-Guti6rrez A. Design of Petlyuk distillation columns aided with collocation techniques [J]. Ind Eng Chem Res, 2007, 46(16): 5365-5370.
  • 7Dejanovia I, Matijaevi6a L, Halvorsenb I J, et al. Designing four-product dividing wall columns for separation of amulticomponcnt aromatics mixture [J]. Chem Eng Res Des, 2011, 89(8): 1155-1167.
  • 8Abul'Wafa A R. Optimization of economic/emission load dispatch for hybrid generating systems using controlll Elitist NSGA-II [J]. Eleetr Pow Sys Res, 2013, 105: 142-151.
  • 9QIANXin.hua(钱新华),SUNXiao-jing(孙晓静),WANGKe-feng(王克峰),基于模拟分析技术和随机搜索算法的化工过程能量集成方法研究[J].高校化学工程学报,1996,1O(3):258-263.
  • 10Luyben W L. Distillation design and control using ASPENTM simulation [M]. Hoboken: John Wiley & Sons, Ine, 2006: 89-90.

同被引文献138

引证文献16

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部