期刊文献+

基于罚因子协进化微分算法优化换热网络 被引量:14

Optimization of Heat Exchanger Networks with Cooperation Differential Evolution Algorithm Based on Penalty Factors
下载PDF
导出
摘要 惩罚函数法优化有约束换热网络时,罚因子的取值过大降低计算效率,过小降低优化精度,设置合适的罚因子值却不容易。基于微分进化算法优化连续变量的启发,采用罚因子协同进化机制,同步优化罚因子与解变量,应用于换热网络优化问题。协进化机制优化主要思想如下:建立两类种群,一类为罚因子种群,一类为换热面积种群。优化过程中,每一组换热面积种群用来评价每一个罚因子个体,逐个优化所有解种群,得到所有罚因子个体的评价值,再根据微分进化的思想,对罚因子执行变异、交叉、选择过程,进化罚因子。两类种群如此反复交替优化,直到满足终止条件。算例证明,协进化机制应用于换热网络优化能进一步提高优化效率与精度,也为混合算法选取合适的罚因子优化换热网络提供了一种新思路。 , Penalty function methods are usually employed to convert constraint problems to unconstraint problems in heat exchanger networks(HENs) optimization. However, it is difficult to set proper penalty factors, since large penalty factors reduce compute efficiency and small ones decrease optimization accuracy. A cooperative mechanism, i.e. a differential evolution algorithm was developed to optimize penalty factor and HENs area variables simultaneously. Two populations are established: penalty factor population and HENs area variable population. Each penalty factor was evaluated by optimizing the corresponding HENs area variable population. The penalty factor was optimized through mutation, crossover, and selection process based on the differential evolution method. These two steps were repeated until the terminal conditions were satisfied. The results demonstrate that the cooperative differential evolution can further improve the optimization efficiency and accuracy, and also provides a new method to select appropriate penalty factors.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第2期407-412,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金资助项目(51176125) 沪江基地研究基地专项(D14001) 上海市人才发展基金(2009022)
关键词 换热网络 约束条件 惩罚函数 惩罚因子 微分进化 heat exchanger networks constraint condition penalty function penalty factor evolution differential
  • 相关文献

参考文献19

  • 1Linnhoff, B. Hindmarsh, E. The pinch design method for heat exchanger networks [J]. Chem Eng Sci, 1983, 38(5):745-763.
  • 2Fraser D M. The use of minimum flux instead of minimum approach temperature as a design specification for heat exchanger networks [J]. Chemical Eng Sci, 1989, 44(5): 1121-1127.
  • 3Floudas C A, Ciric A R, Grossmann I E. Automatic synthesis of optimum heat exchanger network configurations [J]. AIChE Journal, 1986, 32(2): 276-290.
  • 4Floudas C A, Ciric A R. Strategies for overcoming uncertainties in heat exchanger network synthesis [J]. Computers & Chemical Engineering, 1989, 13(10): 1133-1152.
  • 5周聪海,黄智贤,邱挺,吴燕翔.随机搜索算法在换热网络优化中的应用进展[J].化工进展,2012,31(3):495-501. 被引量:13
  • 6Lewin D R. Wang H. Shalev O. A generalized method for HEN synthesis using stochastic optimization-I,General framework and MER optimal synthesis [J]. Comput Chem Eng, 1998, 22(10) :1503-1513.
  • 7Lewin D R. A generalized method for HEN synthesis using stochastic optimization-Ⅱ ,The synthesis of cost-optimal networks [J]. Comput Chem Eng. 1998, 20(10) : 1387-1405.
  • 8Cardoso M F. Salcedo R L. A simulated annealing approach to the solution of MINLP problems.[J]. Comput Chem Eng, 1997, 21(12): 1349-1364.
  • 9严丽娣,霍兆义,尹洪超.粒子群算法最优同步综合换热网络[J].化工进展,2009,28(S1):439-442. 被引量:16
  • 10Price, K. Store R. Lampinen J A. Differential evolution: A practical approach to global optimization [M]. Berlin Heidelberg: Springer-Verlag. 2005.

二级参考文献43

共引文献47

同被引文献86

引证文献14

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部