期刊文献+

关于Levy平均的一个等价估计及应用

An important application and estimation of Levy mean
原文传递
导出
摘要 函数的最优恢复问题是计算复杂性的重要组成部分,而Levy平均估计式是研究最优恢复问题的重要工具。给出了Lp(0<p<∞)空间中Levy平均的一个等价估计式,并将此估计式应用到球面多项式空间中,发现在满足一定的条件下,存在一个球调和函数,使得当2<p<∞时该函数的p范数与2数范等价。 The theory of optimal reconstruction is an important part of computational complexity,and the estimations of Levy mean are widely used in the study of the optimal recovery problems. An important estimation of Levy mean in Lp spaces with 0 p ∞ was obtained. As an application of this result on the space of spherical polynomials,there exists a spherical polynomial such that the norms are equivalent for 2≤p ∞ under some conditions.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第4期24-26,35,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金青年资助项目(11401520) 山东省优秀中青年科学家科研奖励基金资助项目(BS2014SF019) 山东省高等学校科技计划项目(J12LI51)
关键词 Levy平均 范数 球面多项式 Levy mean norm spherical polynomials
  • 相关文献

参考文献8

  • 1VYBIRAI J. Average best m-term approximation [ J ]. Constr Approx, 2012, 36 ( 1 ) : 83-115.
  • 2ALEXANDER K, SERGIO T. On the problem of optimal reconstruction[ J ]. Journal of Fourier Analysis and Applications, 2007, 13 (4) :459-475.
  • 3KUSHPEL A K, Levy means associated with two-point homogeneous spaces and applications [ J ]. Proceedings ot the 49^th Seminario Brasileiro de Analise. Campinas: [ s. n. ], 1999 : 283-292.
  • 4WANG Heping, ZHAI Xuebo, ZHANG Yanwei. Approximation of functions on the Sobolev space on the average case setting [ J]. Journal of Complexity, 2009, 25:362-376.
  • 5WANG Kunyang, LI Luoqing. Harmonic analysis and approximation on the unit sphere [ M ]. Beijing: China Science Press, 2000.
  • 6BOGACHEV V I. Gaussian measures[ M]//Mathematical Surveys and Monographs. New York: American Mathematical So- ciety, 1998.
  • 7WANG Heping, ZHAI Xuebo. Best approximation of functions on the ball on the weighted Sobolev space equipped with a Gaussian measure [ J ]. Journal of Approximation Theory, 2010, 162 : 1160-1177.
  • 8ANDREWS G E, ASKEY R, ROY R. Special functions[M]. Cambridge: Cambridge University Press, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部