期刊文献+

基于Web大数据挖掘的证券价格波动实时影响研究 被引量:8

Research on Stock Price Real-time Fluctuation Influence Based on Web Big Data Mining
下载PDF
导出
摘要 随着Web大数据的发展,互联网中海量、快捷的信息为证券市场变化预测提供了丰富的数据支撑,如何利用大数据分析技术进行实时可靠的证券市场价格变化预测成为重要的科学问题。从证券市场价格变化的核心价值问题研究出发,分析了股票价值所反映的基本面要求,建立了影响股票价值内涵和价格表现的10项准确可度量的特征因素:经济周期、财政政策、利率变动、汇率变动、物价变动、通货膨胀、政治政策、行业变化、经营状况、上下游影响等。在此基础上,构造互联网中信息内容与各个特征因素的提取方法、变化关系和影响模型,提出了针对大盘、行业、个股的互联网信息指标来反映Web数据对其的支撑程度,最终实现了基于Web大数据的综合特征因素度量来预测证券市场的方法。实验表明,该方法具有良好的可行性,将带来明显的学术和商业价值。 With the growing of the Internet,the network of large data has become an important distribution center for the financial sector.These data give valuable opportunities and severe challenges to stock analysis and prediction.The development of Web2.0allows investors to actively participate in all aspects of the creation of network of information,communication and accessing.This paper disclosed information on the Internet and generated complete and effective fundamental of information to get 10 actors that may impact the stock market,which are economic and cycle,fiscal policy,changes in interest rates and exchange rates,price changes,inflation,political policies,changes in the industry,operating conditions and the downstream effects.We proposed an algorithm for the stock market prediction based on these10 factors.Experiments show that the method has good feasibility,and can bring significant academic and commercial values.
出处 《计算机科学》 CSCD 北大核心 2015年第4期166-171,共6页 Computer Science
基金 国家自然科学基金项目:面向过时信息自动发现的Web时态一致性研究(61272109) 中央高校基本科研业务费专项资金项目:Web大数据环境下的数据时态一致性研究(2042014kf0057) 湖北省人文社会科学基金项目:基于Web时间冲突性推理的智能信息过滤研究(14G461)资助
关键词 数据挖掘 股票价格预测 Web大数据 Data mining Stock price forecast Web big data
  • 相关文献

参考文献8

二级参考文献59

  • 1LingZhang,BoZhang.A Quotient Space Approximation Model of Multiresolution Signal Analysis[J].Journal of Computer Science & Technology,2005,20(1):90-94. 被引量:19
  • 2胡新宇,谭运进.对证券投资技术分析理论的再认识[J].商业时代,2005(3):50-51. 被引量:3
  • 3王海涛,曹存根,高颖.基于领域本体的半结构化文本知识自动获取方法的设计和实现[J].计算机学报,2005,28(12):2010-2018. 被引量:31
  • 4史忠植.智能主体及其应用[M].北京:科学出版社,2001.7-11.
  • 5Kindleberger, C. Manias, Panics, and Crashes: A History of Financial Crises 同 Wiley Investment Classic, New York, John Wiley & Sons, 2001.
  • 6Lakonishk, J., Lee, I. and Poteshman, A. , Investor behavior in the option market[C]//NBER Working Papers 10264, Cambridge, Mass: National Bureau of Economic Research, 2004.
  • 7Ahmad, K. and Almas, Y. Visualising sentiments in financial texts? [C]//Proceedings of the Ninth International Conference on Information Visualisation, 00: 363- 368.
  • 8Chaovalit, P. and Zhou, L. Movie review mining: a comparison between supervised and unsupervised classification approaches[C]//Proceedings of the 38th Hawaii International Conference on System Sciences, 2005.
  • 9Turney, P.D. Mining the web for synonyms: PMI-IR versus LSA on TOEFL[C]//Proceedings of the Twelfth European Conference on Machine Learning, Berlin: Springer-Verlag, 2001: 491-502.
  • 10Turney, P.D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[R]. presented at the Association for Computational Linguistics 40th Anniversary Meeting, New Brunswick, N.J., 2002.

共引文献138

同被引文献125

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部