期刊文献+

一种基于拓扑信息的物流频繁路径挖掘算法 被引量:7

Logistics Frequent Path Sequence Mining Algorithm Based on Topological Information
下载PDF
导出
摘要 为了高效地从海量物流数据中获取频繁路径,根据物流网络及物流的特征设计了一种物流数据模型以及一种充分考虑了物流网络拓扑信息的频繁路径序列挖掘算法PMWTI(Path Mining With Topology Information)。在PMWTI中设计了一种用于候选路径序列深度剪枝的代价容忍度剪枝方法,该方法在利用Apriori性质剪枝的基础上进一步去除了部分不可能是频繁路径序列的候选路径序列,这在一定程度上缩减了候选路径序列规模,从而减少了对数据集的扫描。实验表明,相比没有采用该剪枝方法的同等算法,PMWTI具有更高的频繁路径挖掘效率。 In order to get frequent paths from massive logistics data,according to the feature of logistics networks and logistics,this paper provided a logistics data model and a frequent path sequence mining algorithm PMWTI(Path Mining With Topology Information)taking the topological information of logistics networks into consideration.In PMWTI,a cost tolerable degree pruning method used for the deep pruning of candidate path sequences was designed.This method discards some candidate path sequences which are gained by Apriori pruning method but can't be frequent path sequences.It can downscale the candidate path sequences,so that the algorithm scans the dataset less.The experimental result shows that,compared with the same algorithm which do not adopt this pruning method,PMWTI has better mining efficiency.
出处 《计算机科学》 CSCD 北大核心 2015年第4期258-262,共5页 Computer Science
基金 国家自然科学基金项目(61363027) 广西自然科学基金项目(2012GXNSFAA053225)资助
关键词 物流 频繁路径 序列模式 数据挖掘 Logistics Frequent path Sequence pattern Data mining
  • 相关文献

参考文献10

二级参考文献71

  • 1陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 2戴霄,陈学武,李文勇.公交IC卡信息处理的数据挖掘技术研究[J].交通与计算机,2006,24(1):40-42. 被引量:23
  • 3张长海,胡孔法,陈凌.序列模式挖掘算法综述[J].扬州大学学报(自然科学版),2007,10(1):41-46. 被引量:5
  • 4李晓虹,尚晋.一种改进的新Apriori算法[J].计算机科学,2007,34(4):196-198. 被引量:26
  • 5Park J S, Psy U. An efficient parallel data mining for association rules [ C ]//Proc of the 4th on Information and Knowledge Management. New York: ACM Press, 1995 : 31 - 36.
  • 6Cheung D W, Hart J, Ng V T, et al. A fast distributed algorithm for mining association rules [ C ]//Proc of the 4th International Conference on Parallel and Distributed Information Systems. Los Alamitos, USA:IEEE Computer Society Press, 1996 : 31 - 44.
  • 7Zaki M. Spade: an efficient algorithm for mining frequent sequences [ J]. Machine Learning, 2001, 41 (2) : 31 -60.
  • 8Pei J, Han J, Pinto H, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth [ J ]. IEEE Transactions on Knowledge & Data Engineering, 2004,16( 1 ) : 1424 - 1440.
  • 9Zhang Changhai, Hu Kongfa, Liu Haidong, et al. FMGSP: an efficient method of mining global sequential patterns[ C ]//Proc of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Los Alamitos : IEEE Computer Society, 2007 : 761 - 765.
  • 10Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements [ C ]// Proc of 5th International Conference on Extending Database Technology. Heidelberg : Springer, 1996 : 3 - 17.

共引文献69

同被引文献49

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部