期刊文献+

基于全散度的变分CV模型及其分割算法

Variational CV Model Based on Total Bregman Divergence and its Segmentation Algorithm
下载PDF
导出
摘要 CV模型在图像灰度不均匀或有噪声干扰时,易出现错分现象,因此将全散度引入变分CV模型,提出了基于全散度的变分CV模型及其迭代分割算法。分析基于欧氏距离所对应的变分CV模型分割算法存在的问题和不足,通过图示说明全散度相对于欧氏距离在距离计算与坐标系选择无关的优势,将其引入变分CV模型拟合偏差项,来提高图像灰度值与分割区域平均灰度偏差计算的鲁棒性。然后,采用欧拉-拉格朗日变分法获得全散度变分CV模型的偏微分方程,并采用数值计算方法获得该偏微分方程的迭代求解算法。同时在全散度变分CV模型中,增大拟合偏差项的权重系数,加大拟合偏差项在变分模型中的重要性。实验结果表明,全散度变分CV模型具有初始化敏感低、抗噪性强、鲁棒性高等优点。 The classical CV model is not completely suitable to segment the gray image which is intensity inhomogeneity,and has been disturbed by Gaussian noises with some variance.The variational CV model based on the total Bregman divergence was proposed and its iterative segmentation algorithm was presented.Firstly,the problems and disadvantages of the variational CV model segmentation method constructed by the Euclidean metric are analyzed.Secondly,compared with Euclidean metric,a figure shows the advantages of the total Bregman divergence that there is no connection with coordinate system in the distance calculation.Then,to reach the purpose of reducing noise sensitivity and enhance robustness of image segmentation,the data deviation term in CV model is built by the total Bregman divergence.Finally,Euler-Lagrange equation of this proposed variational model is obtained by variational method,and the variational model algorithm of the image segmentation is presented by numerical computation method.In addition,to accelerate the convergence rate,the weighting parameters of fitting terms should appropriately chose bigger value,and the importance of fitting items increases in variational model.The experimental results show that the proposed method is low sensitive to initialize contour curve,and has good anti-noise and robust performance.
出处 《计算机科学》 CSCD 北大核心 2015年第4期306-310,315,共6页 Computer Science
基金 国家自然科学基金重点资助项目(90607008) 陕西省自然科学基金资助项目(2014JM8331 2014JQ5183 2014JM8307) 陕西省教育厅自然科学基金资助项目(2013JK1129) 西安邮电大学2013年研究生创新基金项目(ZL2013-23)资助
关键词 图像分割 CV模型 水平集 全散度 Image segmentation CV model Level set method Total Bregman divergence
  • 相关文献

参考文献19

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:Active contour mo-dels[J].International Journal of Computer vision,1988,1(4):321-331.
  • 2Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer vision,1997,22(1):61-79.
  • 3Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 4Osher S,Sethian J A.Fronts propagating with curvature de-pendent speed:algorithms based on Hamilton-Jacobi formulations[J].Journal of computational physics,1988,79(1):12-49.
  • 5Mumford D,Shah J.Optimal approximations by piecewisesmooth functions and associated variational problems[J].Communications on pure and applied mathematics,1989,42(5):577-685.
  • 6Tsai A,Yezzi Jr A,Willsky A S.Curve evolution implementa-tion of the Mumford-Shah functional for image segmentation,denoising,interpolation,and magnification[J].IEEE Transactions on Image Processing,2001,10(8):1169-1186.
  • 7Bertelli L,Sumengen B,Manjunath B S,et al.A variationalframework for multiregion pairwise- similarity- based image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(8):1400-1414.
  • 8Krinidis S,Chatzis V.Fuzzy energy-based active contours[J].IEEE Transactions on Image Processing,2009,18(12):2747-2755.
  • 9Ben Salah M,Mitiche A,Ben Ayed I.Effective level set image segmentation with a kernel induced data term[J].IEEE Tran-sactions on Image Processing,2010,19(1):220-232.
  • 10Li C,Kao C Y,Gore J C,et al.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Transactions on Image Processing,2008,17(10):1940-1949.

二级参考文献25

  • 1Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis, 1997, 22:61- 79.
  • 2Yezzi A, Kichenassamy S, Kumar A, et al. A geometric snake model for segmentation of medical imagery Med Imaging, 1997, 16:199-209.
  • 3Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: A new variational formulation. In of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society 430-436 IEEE Trans Proceedings Press. 2005.
  • 4Chan T F, Vese L A. Active contours without edges. IEEE Trans Image Process, 2001, 10:266-277.
  • 5Tsai A, Anthony Y J, Willsky A S. Curve evolution implementation of the mumfordcshah functional for image seg- mentation, de-noising, interpolation, and magnification. IEEE Trans Image Process, 2001, 10:1169 -1186.
  • 6Vese L A, Chan T F. A multi-phase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis, 2002, 50:271-293.
  • 7An J, Rousson M, Xu C. γ-convergence approximation to piecewise smooth medical image segmentation. In: Proceed- ings of Int Conf on Medical Image Computing and Computer Assisted Intervention (Part Ⅱ). Berlin: Springer, 2007. 495- 502.
  • 8Li C, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process, 2008, 17:1940-1949.
  • 9Wang L, Macione J, Sun Q, et al. Level set segmentation based on local gaussian distribution fitting. In: Proceedings of Asian Conf on Computer Vision. Berlin: Springer, 2009. 293-302.
  • 10Liu H, Chen Y, Chen W. Neighborhood aided implicit active contours. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006. 841-848.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部