期刊文献+

一种基于分块匹配的SIFT算法 被引量:7

SIFT Algorithm Based on Block Matching
下载PDF
导出
摘要 SIFT算法在图像处理领域具有独特的优势,但是经过不断发展,SIFT算法在特征匹配过程中仍然具有数据处理量大、计算速度慢的问题。基于这些问题,提出了一种基于分块匹配的新型SIFT匹配算法,它通过剔除非重叠区域来降低特征提取和匹配的时间损耗。对于图像的刚性变换,算法的核心在于图像块的切分和重叠区域的计算,首先选取少量的种子点来估算两幅图像的相关变换矩阵;然后将原始图像切分为几块,通过变换矩阵找出在匹配图中的相关块;再检测所有的匹配块上的特征点;最后结合RANSAC算法去除伪匹配点对,来提高匹配的准确率。实验结果表明:与标准SIFT算法相比,基于分块匹配的SIFT算法在实时性和鲁棒性方面得到了进一步的提升,在实际图像匹配中具有一定的应用价值。 SIFT algorithm has distinctive advantages in the field of image processing.However,with the development of the SIFT algorithm,it still has some disadvantages such as the large amount of data processing,slow computing speed.To address these issues,a SIFT algorithm based on block matching was proposed.It reduces the time of feature extraction and matching by extracting the overlapping areas.For the rigid transformation of a image,the core of the algorithm is to calculate the image block segmentation and overlapping areas.In the first step,a small number of seed points are selected to estimate the associated transformation matrix of two images.Then,the original image is cut into pieces and the relevant block is found by the transformation matrix.In the second step,all of the matching feature points are detected on the block.Finally,RANSAC algorithm is used to remove error matching points to improve the matching accuracy.The experimental results show that the improved SIFT algorithm of block matching has better real-time and robustness than the standard SIFT algorithm,and it has a certain application value in the actual image matching.
出处 《计算机科学》 CSCD 北大核心 2015年第4期311-315,共5页 Computer Science
基金 中央高校基本科研业务费专项资金(135210008) 中央高校基本科研业务费专项基金(2014-VII-027) 国家自然科学基金(51179146) 湖北省自然科学基金(2011CDB254)资助
关键词 分块匹配 SIFT 鲁棒性 RANSAC 变换矩阵 Block matching SIFT Robustness RANSAC Transformation matrix
  • 相关文献

参考文献10

二级参考文献47

  • 1林诚凯,李惠,潘金贵.一种全景图生成的改进算法[J].计算机工程与应用,2004,40(35):69-71. 被引量:7
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 4庄志国,孙惠军,董继扬,陈忠.基于角点检测的图像匹配算法及其在图像拼接中的应用[J].厦门大学学报(自然科学版),2007,46(4):501-505. 被引量:19
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Internalional Journal of Computer Vision, 2004, 60(2) :91 -110.
  • 6Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors [ A ]. Proceedings of Conference on Computer Vision and Pattern Recognition[ C], 2004.
  • 7Gao Guandong, Jia Kebin. A new image mosaics algorithm based on feature points matching [C]//ICICIC'07 Proceedings of the Second International Conference on Innovative Computing, Information and Control, 2007: 471-474.
  • 8Matungka R, Zheng Y F, Ewing R L. Image registration using adaptive polar transform [J]. IEEE Transactions on Image Processing, 2009, 18(10): 234,0-2354.
  • 9Tang Chengyuan, Wu Yileh, Wang Wenhung. Modified SIFT descriptor for image matching under interference [C]// IEEE International Conference on Machine Learning and Cybernetics, 2008: 3294-3300.
  • 10Lowe D G. Distinctive image features from scale invariant key points [J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.

共引文献54

同被引文献42

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部