期刊文献+

改进型RBF神经网络的多标签算法研究 被引量:8

Multi-label Learning for Improved RBF Neural Networks
下载PDF
导出
摘要 针对已有的RBF神经网络多标签算法未充分考虑多个样本标签之间的关联性,从而导致泛化性能受到一定影响的问题,研究分析了一种改进型RBF神经网络的多标签算法。该算法首先优化隐含层RBF神经网络基函数中心求取算法——k-均值聚类。采用AP聚类自动寻找k值以获得隐含层节点数目,并构造Huffman树来选取初始聚类中心以防k-均值聚类结果陷入局部最优。然后构造体现标签类之间信息的标签计数向量C,并将其与由优化k-均值聚类得到的聚类中心进行线性叠乘,进而改进RBF神经网络基函数中心,建立RBF神经网络。在公共多标签数据集emotion上的实验表明了该算法能够有效地进行多标签分类。 A modified multi-label radial basis function(RBF)neural network algorithm that can fully consider the relationship between numbers of sample labels was presented.This improved algorithm is based on the fact that ignoring the relevance between sample labels may cause potential performance loss.The modified algorithm first optimizes the RBF basis function center calculation algorithm in hidden layer,i.e.k-means clustering.AP clustering is used to automatically find kvalues to obtain the node number of hidden layer and a Huffman tree is constructed to select the initial cluster centers to prevent the k-means clustering results falling into local optimal.Then a label counting vector Cthat reflects the correlation between the labels is constructed,and it is linearly multiplied with the clustering centers which are obtained through k-means clustering optimization to optimize the RBF basis function center and establish RBF neural network.Experiments using the public multi-label emotion data sets demonstrate the effectiveness of the proposed algorithm.
出处 《计算机科学》 CSCD 北大核心 2015年第4期316-320,共5页 Computer Science
基金 国家社会科学基金:大众分类中标签间语义关系挖掘研究(12BTQ038)资助
关键词 多标签学习 RBF神经网络 K-均值聚类 AP聚类 Multi-label learning RBF neural networks k-means clustering AP clustering
  • 相关文献

参考文献20

  • 1Bucak S S,Jin R,Jain A K.Multi-label learning with incomplete class assignments[C]∥Proceedings of the IEEE Computer Socie-ty Conference on Computer Vision and Pattern Recognition.Colorado Springs,CO,2011:2801-2808.
  • 2张敏灵,周志华.多标签学习[M].北京:清华大学出版社,2011.
  • 3李宇峰,黄圣君,周志华.一种基于正则化的半监督多标记学习方法[J].计算机研究与发展,2012,49(6):1272-1278. 被引量:18
  • 4孔祥南,黎铭,姜远,周志华.一种针对弱标记的直推式多标记分类方法[J].计算机研究与发展,2010,47(8):1392-1399. 被引量:13
  • 5Sanden C,Zhang J Z.Enhancing multi-label music genre classification through ensemble techniques[C]∥Proceedings of the 34th international ACM SIGIR conference on Research and Development in Information Retrieval.Beijing,China,2011:705-714.
  • 6Li Guo-zheng,You Ming-yu,Ge Le,et al.Feature selection forsemi-supervised multi-label learning with application to gene function analysis[C]∥Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology.Niagara Falls,New York,2010:354-357.
  • 7Gopal C,Yang Y.Multi-label classification with meta-level features[C]∥Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Geneva,Switzerand,2010:315-322.
  • 8Crammer K,Singer Y.A new family of online algorithms forcategory ranking[C]∥Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,ACM,2002:151-158.
  • 9Kim Y E,Schmidt E M,Migneco R,et al.Music emotion recognition:A state of the art review[C]∥11th International Society for Music Information Retrieval Conference.Utrecht,Netherlands,2010:255-266.
  • 10Barutcuoglu Z,Schapire R E,Troyanskaya O G.Hierarchicalmulti-label prediction of gene function [J].Bioinformatics,2006,2(7):830-836.

二级参考文献103

  • 1Schapire R E,Singer Y.Boostexter:A boosting-based system for text categorization[J].Machine Learning,2000,39(2/3):135-168.
  • 2Elisseeff A,Weston J.A kernel method for multi-labelled classification[C] //Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002:681-687.
  • 3Zhang M -L,Zhou Z -H.Ml-kNN:A lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40(7):2038-2048.
  • 4Zhang M -L,Zhou Z -H.Multi-label neural networks with applications to functional genomics and text categorization[J].IEEE Trans on Knowledge and Data Engineering,2006,18(10):1338-1351.
  • 5周志华,张敏灵,黄圣君,等.MIML:一种从歧义对象中学习的框架,0808.3231[R].南京:南京大学软件新技术国家重点实验室,2008.
  • 6Comite F D,Gilleron R,Tommasi M.Learning multi-label alternating decision tree from texts and data[C] //Proc of the 3rd Int Conf on Machine Learning and Data Mining in Pattern Recognition.Berlin:Springer,2003:35-49.
  • 7Gao S,Wu W,Lee C -H,et al.A MFoM learning approach to robust multiclass multi-label text categorization[C] //Proc of the 21st Int Conf on Machine Learning.New York:ACM,2004:329-336.
  • 8Kazawa H,Izumitani T,Taira H,et al.Maximal margin labeling for multi-topic text categorization[C] //Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2005:649-656.
  • 9McCallum A.Multi-label text classification with a mixture model trained by EM[C] //Working Notes of the AAAI'99 Workshop on Text Learning.Menlo Park,CA:AAAI,1999:1-7.
  • 10Boutell M R,Luo J,Shen X,Brown C M.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771.

共引文献73

同被引文献74

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部