期刊文献+

面向脑电数据的知识建模和情感识别 被引量:3

EEG-data-oriented knowledge modeling and emotion recognition
原文传递
导出
摘要 心理科学研究依赖于对生理、心理数据的分析,情感是心理研究的重要内容.近年来随着认知神经科学研究技术的成熟,研究者利用脑电(electroencephalogram,EEG)等可以反映脑功能活动的生理信号,直接研究情感问题,如情感识别、情绪脑等.但是,生理信号将会产生TB级甚至PB级的数据量,认知研究和临床神经科学在过去几十年中已产生大量生理数据,对这些大数据的表示和情感知识挖掘需要更高级的工具.构建能够表示数据含义和情感相关知识的模型,能够给心理研究者提供一个知识共享平台,以便使用这些大数据进行情感方面的科学研究.本文构建一个可以表示EEG数据语义和被试者上下文信息的本体模型,并基于该模型使用推理引擎进行基于EEG生理信号数据的自动情感识别.实验结果表明,模型在e NTERFACE 2006数据集上能够以99.11%的平均准确率识别被试者的情感状态,并从实验结果分析发现基于EEG数据情感识别最关键的特征是Beta波与Theta波的绝对功率比. Psychological research relies on physical and psychological data, and emotion has always been an important subject in the field of psychology. Recently, with the development of cognitive neuroscience technology, researchers can study topics such as emotion recognition and the emotional brain using electroencephalogram (EEG) and other physiological signals that reflect brain activity. These physiological signals can generate terabytes or even petabytes of data, and in fact, cognitive research and clinical neuroscience has already accumulated a wealth of data over the past several decades. Knowledge representation of this large amount of data and mining it for information regarding emotion requires more advanced tools. Making a data model that can clearly represent the meaning of data associated with emotion information would create a knowledge-sharing platform for psychological researchers to access the vast amount of data for further scientific research related to emotion. This paper provides such an ontology model that represents the semantics of EEG data with contextual information about the subjects. We used the model in conjunction with a reasoning engine to perform automatic emotion recognition based on EEG signals. Experimental results show that the ontology model reaches an average accuracy of 99.11% in identifying the emotional state of the subjects. Analysis of the results suggests that the most critical characteristic of EEG-based emotion recognition is the absolute power ratio between beta and theta waves.
出处 《科学通报》 EI CAS CSCD 北大核心 2015年第11期1002-1009,共8页 Chinese Science Bulletin
基金 国家重点基础研究发展计划(2014CB744600) 国家国际科技合作专项(2013DFA11140) 国家自然科学基金(61210010 61402211) 甘肃省省青年科技基金计划(1308RJYA085 1208RJYA015)资助
关键词 EEG 本体 情感识别 基于规则推理 随机森林 EEG, ontology, emotion recognition, inference based on rules, random forest
  • 相关文献

参考文献26

  • 1郭华东,王力哲,陈方,梁栋.科学大数据与数字地球[J].科学通报,2014,59(12):1047-1054. 被引量:136
  • 2Hendler J. Science and the semantic web. Science, 2003, 299:520-521.
  • 3Neumann E. A life science semantic web: Are you there yet? Sci STKE, 2005, 1-22.
  • 4Nunez P L, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. 2nd ed. Oxford: Oxford University Press, 2006.
  • 5柳昀哲,张丹丹,罗跃嘉.婴儿社会和情绪脑机制的早期发展[J].科学通报,2013,58(9):753-761. 被引量:5
  • 6张晶,周仁来.额叶EEG偏侧化:情绪调节能力的指标[J].心理科学进展,2010,18(11):1679-1683. 被引量:27
  • 7Ray W J, Cole H W. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Sci- ence, 1985, 228:750-752.
  • 8Kostyunina M B, Kulikov M A. Frequency characteristics of EEG spectra in the emotions. Neurosci Behav Physiol, 1996, 26:340-343.
  • 9Krause C M, Viemero V, Rosenqvist A, et al. Relative electroencephalographic desynchronization and synchronization in humans to emotional film content: An analysis of the 4-6, 6-8, 8-10 and 10-12 Hz frequency bands. Neurosci Lett, 2000, 286:9-12.
  • 10Aftanas L I, Reva N V, Varlamov A, et al. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional ac- tivation in humans: Temporal and topographic characteristics. Neurosci Behav Physiol, 2004, 34:859-867.

二级参考文献74

  • 1Leppanen J M, Nelson C A. Early development of fear processing. Curr Dir Psychol Sci, 2010, 21: 200-204.
  • 2Leppanen J M, Nelson C A. Tuning the developing brain to social signals of emotions. Nat Rev Neurosci, 2009, 10: 37-47.
  • 3Vaish A, Grossmann T, Woodward A. Not all emotions are created equal: The negativity bias in social-emotional development. Psychol Bull, 2008, 134: 383-403.
  • 4Johnson M H. Interactive specialization: A domain-general framework for human functional brain development? Deve Cogn Neurosci, 2011, 1: 7-21.
  • 5Lindquist K A, Wager T D, Bliss-Moreau E, et al. What are emotions and how are they created in the brain? Behav Brain Sci, 2012, 35: 172-202.
  • 6Flom R, Bahrick L E. The development of infant discrimination of affect in multimodal and unimodal stimulation: The role of intersensory redundancy. Dev Psychol, 2007, 43: 238-252.
  • 7Brothers L. The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Conc Neurosci, 1990, 1: 27-51.
  • 8Grossmann T, Johnson M H. The development of the social brain in human infancy. Eur J Neurosci, 2007, 25: 909-919.
  • 9McGraw L A, Young L J. The prairie vole: An emerging model organism for understanding the social brain. Trends Neurosci, 2010, 33: 103-109.
  • 10Luo Q, Holroyd T, Jones M, et al. Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. NeuroImage, 2007, 34: 839-847.

共引文献165

同被引文献16

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部