期刊文献+

腺苷酸激活蛋白激酶激活参与促进慢性缺氧时心肌细胞存活 被引量:4

AMPK activation participates in promoting myocardial cell survival in chronic hypoxia
下载PDF
导出
摘要 目的检测腺苷酸激活蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)在慢性缺氧心肌组织中的激活水平,探讨AMPK激活对慢性缺氧心肌细胞存活的影响及其意义。方法选择本科2013年行手术矫治的先心病患儿24例,其中紫绀型先心病患儿12例,非紫绀型先心病患儿12例,取手术中切除的右室流出道心肌组织作为标本;选用4-6周龄清洁级雄性SD大鼠24只,分为常氧组和缺氧组(n=12)。将缺氧组置入低压舱(模拟海拔5 000 m,气压405 mm Hg),常氧组正常饲养。同时喂养28 d后,处死大鼠后迅速取出心脏并分离出右心室部分作为标本。采用Western blot分别检测p-AMPK在人体、大鼠缺氧心肌组织中的激活水平。选用H9c2心肌细胞株,并将其分为常氧组、低氧组、阻断组、激活组。将后3组细胞置入缺氧培养箱3 d(94%N2,5%CO2,1%O2),建立H9c2心肌细胞株慢性缺氧模型;常氧组置入细胞培养箱3 d,对照培养。分别向阻断组和激活组中加入AMPK特异性阻断剂Compound C和激活剂AICAR,采用Western blot检测p-AMPK的表达,流式细胞仪、TUNEL法检测心肌细胞凋亡,Hoechst33528染色观察细胞核形态、LDH测定心肌细胞死亡率。结果 Western blot结果显示与常氧组相比,缺氧心肌组织中p-AMPK/AMPK比值明显增高。与低氧组比较,AMPK阻断组凋亡细胞比例升高,TUNEL-阳性细胞比例、不正常核比例、细胞死亡率均明显升高(P〈0.05,P〈0.01);AMPK激活组与低氧组比较,凋亡细胞比例、TUNEL-阳性细胞比例、不正常核比例、细胞死亡率均有降低(P〈0.05)。结论在慢性缺氧条件下,AMPK蛋白磷酸化水平增强,p-AMPK对心肌细胞慢性缺氧适应具有一定保护作用。 Objective To detect adenosine monophosphate-activated protein kinase( AMPK)activation level in chronic hypoxic myocardial tissues,and explore the protective effect of phosphorylated AMPK( p-AMPK) to the currival of chronic hypoxic myocardial cells. Methods Twenty-four children with congenital heart disease,including 12 cases of cyanotic type and type 12 cases of non-cyanotic,were selected from Xinqiao Hospital of Third Military Medical University in 2013,and the myocardial tissues of right ventricular outflow tract were taken out as samples. Twenty-four SD male rats were divided into normoxic control group and hypoxia group. The hypoxia group was placed in a low-pressure tank( simulated altitude of5 000 m,405 mm Hg),while the normoxic control group received normal feeding. After feeding for 28 d,the rats were executed and the hearts were immediately taken out to isolate the right ventricular tissues. Western blotting was used to detect the activation level of AMPK in the hypoxic myocardial tissues of the children and rats. H9c2 myocardial cells were divided into normoxic control group,hypoxia group,blocking group and activation group. Except the normoxic control group,other three groups were placed in a hypoxia incubator( 94% N2,5% CO2,1% O2) for 3 d to establish H9c2 chronic hypoxia cell models,while the normoxic control group was cultured in a cell culture box for 3 d in comparison. AMPK-specific blocker Compound C and activator AICAR were added to the blocking group and the activation group,respectively. Western blotting was employed to detect the expression of p-AMPK,and flow cytometry and TUNEL assay were adopted to detect myocardial cell apoptosis. The cell nucleus shape was observed by Hoechst staining,and myocardial cell death was measured with LDH test kit. Results Western blot results showed that compared with the normoxian group,the p-AMPK / AMPK ratio in the hypoxic myocardial tissue was increased significantly.Compared with the hypoxia group,the apoptosis cell percentage,TUNEL-positive cell percentage( P〈0. 05),abnormal nuclear scale( P〈0. 01),and cell mortality( P〈0. 01) of the blocking group were increased significantly. Compared with the hypoxia group,the apoptosis cell percentage,TUNEL-positive cell percentage( P〈0. 05),abnormal nuclear scale( P〈0. 05),and cell mortality( P〈0. 05) of the AMPK activation group were decreased. Conclusion Under the condition of chronic hypoxia,AMPK protein phosphorylation level is enhanced,and p-AMPK provides a certain protective effect to myocardial cells in chronic hypoxia adaptation.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2015年第8期797-803,共7页 Journal of Third Military Medical University
基金 国家自然科学基金面上项目(81270228)~~
关键词 腺苷酸激活蛋白激酶 慢性缺氧 心肌细胞 monophosphate-activated protein kinase chronic hypoxia myocardial cell
  • 相关文献

参考文献22

  • 1Kornosky J L, Salihu H M. Getting to the heart of the matter: epidemiology of cyanotic heart defects [ J ]. Pediatr Cardiol, 2008, 29 ( 3 ) : 484 - 497.
  • 2Roger V L, Go A S, Lloyd-Jones D M, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association[J]. Circulation, 2012, 125 ( 1 ) : e2 - e220.
  • 3Chitra L, Boopathy R. Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung [ J ]. Respir Physiol Neurobiol 2014, 192 : 74 - 84.
  • 4Nouette-Gaulain K, Biais M, Savineau J P, et al. Chronic hypoxia-induced 'alterations in mitochondrial energy metabolism are not reversible in rat heart ventricles [ J ]. Can J Physiol Pharmacol, 2011, 89(1): 58-66.
  • 5Essop M F. Cardiac metabolic adaptations in response to chronic hypoxia[ J]. J Physiol, 2007, 584 Pt 3): 715 - 726.
  • 6Arad M, Seidman C E, Seidman J G, et al AMP-activated protein kinase in the heart: role during health and disease [J]. Cire Res, 2007, 100(4) : 474 -488.
  • 7Jian Z, Li J B, Ma R Y, et al. Increase of macrophage migration inhibitory factor ( MIF ) expression in cardiomyocytes during chronic hypoxia[ J]. Clin Chim Aeta, 2009, 405(1/2) : 132 - 138.
  • 8蹇朝,马瑞彦,王咏,陈劲进,陈林,钟前进,王学锋,肖颖彬.缺氧诱导因子-1α在紫绀型先心病患儿心肌中的表达[J].第三军医大学学报,2009,31(12):1189-1192. 被引量:8
  • 9He S, Liu P, Jian Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway[J]. Biochem Biophys Res Commun, 2013, 441 (4) : 763 - 769.
  • 10Borgdorff V, Rix U, Winter G E, et al. A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF[J]. Oncogene, 2014, 33 (19): 2531 - 2539.

二级参考文献15

  • 1Krishnan J,Ahuja P,Bodenmann S,et al.Essential role of developmentally activated hypoxia-inducible factor 1 alpha for cardiac morphogenesis and function[J].Circ Res,2008,103(10):1139-1146.
  • 2Koivunen P,Hirsila M,Remes A M,et al.Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates:possible links between cell metabolism and stabilization of HIF[J].J Biol Chem,2007,282(7):4524-4532.
  • 3Parisi Q,Biondi-Zoccai G G,Abbate A,et al.Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction[J].Int J Cardiol,2005,99(2):337-339.
  • 4Lavine K J,Ornitz D M.Shared circuitry:developmental signaling cascades regulate both embryonic and adult coronary vasculature[J].Circ Res,2009,104(2):159-169.
  • 5Driscoll D J.Evaluation of the cyanotic newborn[J].Pediatr Clin North Am,1990,37(1):1-23.
  • 6Najm H K,Wallen W J,Belanger M P,et al.Does the degree of cyanosis affect myocardial adenosine triphosphate levels and function in children undergoing surgical procedures for congenital heart disease?[J].J Thorac Cardiovasc Surg,2000,119(3):515-524.
  • 7Wittnich C,Torrance S M,Carlyle C E.Effects of hyperoxia on neonatal myocardial energy status and response to global ischemia[J].Ann Thorac Surg,2000,70(6):2125 -2131.
  • 8Semenza G L.Hypoxia-inducible factor 1:master regulator of O2 homeostasis[J].Curr Opin Genet Dev,1998,8(5):588 -594.
  • 9Huang L E,Gu J,Schau M,et al.Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway[J].Proc Natl Acad Sci U S A,1998,95(14):7987-7992.
  • 10Semenza G L.Hypoxia-inducible factor 1:oxygen homeostasis and disease pathophysiology[J].Trends Mo1 Med,2001,7(8):345-350.

共引文献7

同被引文献54

  • 1金惠铭,王建枝,主编,病理生理学.人民卫生出版社,2004,6.
  • 2Ken-ichiro Okada,Tetsuo Minamino,Yoshitane Tsukamoto,Yulin Liao,Osamu Tsukamoto,Seiji Takashima,Akio Hirata,Masashi Fujita,Yoko Nagamachi,Takeshi Nakatani,Chikao Yutani,Kentaro Ozawa,Satoshi Ogawa,Hitonobu Tomoike,Masatsugu Hori,Masafumi Kitakaze.Prolonged Endoplasmic Reticulum Stress in Hypertrophic and Failing Heart After Aortic Constriction: Possible Contribution of Endoplasmic Reticulum Stress to Cardiac Myocyte Apoptosis[J]. Circulation . 2004 (6)
  • 3Jian Z, Li J B, Ma R Y, et al. Pivolal role of activating I.ran- scription factor 6alpha in myocardial adaptation to chronic hy-poxia [J]. Int J Biochem Cell Biol, 2012, 44(6) : 972 - 979. DOI: 10. 1016/j. biocel. 2012.03. 004.
  • 4Archer S L. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases [ J]. N Engl J Med, 2013, 369 (23) : 2236 - 2251. DOI : 10. 1056/NEJMra1215233.
  • 5Youle R J,van-der-Bliek A M. Mitochondrial fission, fusion, and stress [J]. Science, 2012, 337(6098) : 1062 - 1065. DOI : 10,1126/science. 1219855.
  • 6Westermann B. Mitochondrial fusion and fission in cell life and death [J]. Nat Rev Mol Cell Biol, 2010, 11 (12): 872 - 884. DOI: 10. 1038/nrm3013.
  • 7Kim H, Scimia M C, Wilkinson D, et al. Fine-tuning of Drpl/Fisl availability by AKAP121/Siah2 regulates mito- chondrial adaptation to hypoxia [ J ]. Mol Cell, 2011,44 (4) : 532 - 544. DOI : 10. lO16/j, molcel. 2011.08. 045.
  • 8Liu B, Ghosh S, Yang X, et al. Resveratrol rescues SIRT1- dependent adult stem cell decline and alleviates progeroid fea- tures in laminopathy-based progeria [ J ]. Cell Metab, 2012, 16(6) : 738 -750. DOI: 10. 1016/j. cmet. 2012,11. 007.
  • 9Dioum E M, Chen R, Alexander M S, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-respon- sive deacetylase sirtuin 1 [ J ]. Science, 2009, 324 ( 5932 ) : 1289 -1293. DOI: 10. l126/science. 1169956.
  • 10Shin D H, Choi Y J, Park J W. SIRT1 and AMPK mediate hypoxia-induced resistance of non-small cell lung cancers to cisplatin and doxorubicin [ J ]. Cancer Res, 2014, 74 ( 1 ) : 298 - 308. DOI: 10. 1158/0008-5472. CAN-13-2620.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部