期刊文献+

基于加速度传感器的运动模式识别 被引量:14

Motion pattern recognition using acceleration transducer
下载PDF
导出
摘要 提出一种用于识别人体运动行为模式的算法,该算法仅需从智能手机加速传感器获取信号数据,对信号进行频域滤波,采用改进的DBSCAN算法进行聚类和识别出运动模式。实验结果表明该算法具有较高的准确率和实用性。 This paper proposes a motion pattern recognition algorithm which only uses acceleration transducer on phone. The algorithm executes frequency domain filtering of acceleration transducer signal collected and then adopts improved DBSCAN algorithm when clustering. The experiment results show that the algorithm achieves higher accuracy and availability.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第6期235-239,共5页 Computer Engineering and Applications
关键词 手机加速传感器 运动模式 滤波 聚类 acceleration transducer movement pattern filtering clustering
  • 相关文献

参考文献10

  • 1Lim J G,Kim S Y,Kwon D S.Pattern recognition-based real-time end point detection specialized for accelerometer signal[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009:203-208.
  • 2Akl A,Valaee S.Accelerometer-based gesture recognition via dynamic-time warping,affinity propagation,&compressive sensing[C]//2010 IEEE International Conference on Acoustics Speech and Signal Processing(ICASSP),2010:2270-2273.
  • 3Schutz Y,Weinsier S,Terrier P,et al.A new accelerometric method to assess the daily walking practice[J].International Journal of Obesity and Related Metabolic Disorders:Journal of the International Association for the Study of Obesity,2002,26(1):111-118.
  • 4Kim S,Jung W,Kim H.A location inference algorithm based-on smart phone user data modelling[C]//2014 16th International Conference on Advanced Communication Technology(ICACT),2014:1232-1236.
  • 5Liu H,Darabi H,Banerjee P,et al.Survey of wireless indoor positioning techniques and systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2007,37(6):1067-1080.
  • 6Wu C,Yang Z,Liu Y,et al.WILL:wireless indoor localization without site survey[J].IEEE Transactions on Parallel and Distributed Systems,2013,24(4):839-848.
  • 7Cho H,Kim S,Baek J,et al.Motion recognition with smart phone embedded 3-axis accelerometer sensor[C]//2012 IEEE International Conference on Systems,Man,and Cybernetics(SMC),2012:919-924.
  • 8Abdulla U A,Taylor K,Barlow M,et al.Measuring walking and running cadence using magnetometers[C]//2013 12th IEEE International Conference on Trust,Security and Privacy in Computing and Communications(Trust Com),2013:1458-1462.
  • 9Hsu H H,Tsai K C,Cheng Z,et al.Posture recognition with G-sensors on smart phones[C]//2012 15th International Conference on Network-Based Information Systems(NBi S),2012:588-591.
  • 10孙冰怡,吕巍,李文洋.基于智能手机传感器和SC-HMM算法的行为识别[J].吉林大学学报(理学版),2013,51(6):1128-1132. 被引量:7

二级参考文献12

  • 1Hamm J, Stone B, Belkin M, et al. Automatic Annotation of Daily Activity from Smartphone-Based Multisensory Streams [C]//Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin: Springer, 2013: 328-342.
  • 2Chennuru S, CHEN Peng-wen, ZHU Jiang, et al. Mobile Lifelogger-Recording, Indexing, and U'nderstanding a Mobile User' s Life [C]//Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin: Springer, 2012:263 281.
  • 3Altun K, Barshan B. Human Activity Recognition Using Inertial/Magnetic Sensor Units [C]//Human Behavior Understanding. Berlin:Springer, 2010: 38-51.
  • 4GU Tao, WANG Liang, WU Zhan-qing, et al. A Pattern Mining Approach to Sensor-Based Human Activity Recognition [J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(9): 1359-1372.
  • 5Bieber G, Voskamp J, Urban B. Activity Recognition for Everyday Life on Mobile Phones [C]//Universal Access in Human Computer Interaction. Intelligent and Ubiquitous Interaction Environments. Berlin: Springer, 2009: 289-296.
  • 6Lester J, Choudhury T, Borriello G. A Practical Approach to Recognizing Physical Activities [C]//PERVA SIVE'06 Proceedings of the 4th International Conference on Pervasive Computing. Berlin: Springer, 2006: 1-16.
  • 7Cormen T H, Leiserson C E, Rivest R L. Introduction to Algorithms [M]. Cambridge: MIT Press, 1990.
  • 8Morris B T, Trivedi M M. Trajectory I.earning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11) :2287-2301.
  • 9Lafferty J D, McCallum A, Pereira F C N. Conditional Random Fields: Probabibstic Models for Segmenting and Labeling Sequence Data [ C]//Proeeedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2001: 282-289.
  • 10Altun Y, Tsochantaridis I, Hofmann T. Hidden Markov Support Vector Machines [C]//Proceedings of the Twentieth International Conference of Machine Learning (ICML 2003). Washington DC: AAAI Press, 2003: 3-10.

共引文献6

同被引文献129

引证文献14

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部