期刊文献+

FAST-SR-UKF算法及其在组合导航系统中的应用 被引量:1

Theory and application of FAST-SR-UKF to integrated navigation systems
下载PDF
导出
摘要 为解决无迹卡尔曼滤波(UKF)算法在组合导航应用中遇到的系统模型不确定、系统噪声统计特性未知以及计算误差较大等问题,提出了模糊自适应强跟踪平方根无迹卡尔曼滤波(FAST-SR-UKF)算法,该算法不仅具有传统UKF的优势,而且包含如下特点:通过模糊自适应强跟踪模块,增强了系统对模型不确定性以及噪声统计参数未知的适应能力;利用平方根滤波的思想,提高了模糊自适应强跟踪无迹卡尔曼滤波算法的数值稳定性,改善了由于计算误差导致的滤波发散问题。仿真结果表明:相对于传统的UKF算法,该算法精度更高、鲁棒性更强。 To address the problems encountered in integrated navigation systems, such as errors introduced by system model uncertainties and unknown noise statistics, a new filtering algorithm which has been named the Fuzzy Adaptive Strong Tracking Square-Root Unscented Kalman Filtering(FAST-SR-UKF)is presented in this paper. The algorithm not only possesses the advantages of the conventional UKF, but also has merits of high filtering accuracy and good stability to system model uncertainties. Experimental results show that the proposed algorithm is superior to the conventional UKF.
作者 吕新知
出处 《计算机工程与应用》 CSCD 北大核心 2015年第6期254-259,共6页 Computer Engineering and Applications
关键词 组合导航系统 非线性滤波 无迹卡尔曼滤波 模糊逻辑 integrated navigation systems nonlinear filtering unscented Kalman filters fuzzy logical
  • 相关文献

参考文献15

  • 1An D,Rios J A,Liccardo D.A UKF based GPS/DR positioning system for general aviation[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation,ION GNSS,2005:989-998.
  • 2Zhang H T,Zhao Y J.The performance comparison and analysis of extended Kalman filters for GPS/DR navigation[J].OPTIK,2011,122(9):777-781.
  • 3Wan E A,van der Merve R.The unscented Kalman filter for nonlinear estimation[C]//Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing,Communication and Control,Lake Louise,Canada,2000:153-158.
  • 4Jwo D J,Lai C N.Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation[J].GPS Solutions,2008,9(12):249-260.
  • 5Park C G,Kim K,Kang W Y.UKF based in-flight alignment using low cost IMU[C]//Collection of Technical Papers-AIAA Guidance,Navigation,and Control Conference,2006:2637-2648.
  • 6Wu Z W,Yao M L,Ma H G,et al.Low-cost antenna attitude estimation by fusing inertial sensing and two-antenna GPS for vehicle-mounted satcom-on-the-move[J].IEEE Transactions on Vehicular Technology,2013,62(3):1084-1096.
  • 7Cheein F A A.Covariance-based measurement selection criterion for Gaussian-based algorithms[J].Entropy,2013,15(1):287-310.
  • 8Rincon F D,Esposito M,de Araujo P H H,et al.Calorimetric estimation employing the unscented Kalman filter for a batch emulsion polymerization reactor[J].Macromolecular Reaction Engineering,2013,7(1):24-35.
  • 9Lalami A,Wamkeue R,Kamwa I,et al.Unscented Kalman filter for non-linear estimation of induction machine parameters[J].IET Electric Power Applications,2012,6(9):611-620.
  • 10徐安,寇英信,王琳,任波.强跟踪自适应滤波器实现机动目标的精确跟踪[J].电光与控制,2008,15(10):37-41. 被引量:3

二级参考文献19

共引文献68

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部