期刊文献+

多视角几何Rao-Blackwellised SLAM 算法

SLAM method with multiple vision geometric and Rao-Blackwellised particle filtering
下载PDF
导出
摘要 低成本传感器、高精度定位是机器人同步定位与地图构建的热点研究问题。采用单视觉传感器来获取多个图像视觉信息,通过因式分解求解多幅图像的空间关系;利用多视角几何理论获得环境深度信息。机器人的同步定位与地图构建是通过对观测模型进行一阶泰勒近似,以及Rao-Blackwellised粒子滤波迭代进行的。在MT-R移动机器人研究平台进行实验,实验结果表明所提出的方法在定位精度指标优于经典的EKF-SLAM方法,并且只需要单个摄像头。 Low price sensor and high precise localization is a hot research issue. In this paper, only single camera is used to catch multiple images. The relation between images is gotten by factorization method. From the multiple geometric calculating, the deep on the environments is gotten. The robot simultaneous localization and mapping is performed iteratively by the Rao-Blackwellisated filter. The observation model is approximated with first-order Taylor. The experiments are performed with MT-R robot plant. The results show that the localization precise of robot with only single camera is more than the classic method.
作者 弋英民 黄莹
出处 《计算机工程与应用》 CSCD 北大核心 2015年第7期35-39,60,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.51275405) 陕西省教育厅自然科学专项(No.2013Jk1078)
关键词 多视角几何 单目视觉 Rao-Blackwellised粒子滤波 SLAM算法 multiple vision geometric single camera Rao-Blackwellised particle filtering SLAM algorithm
  • 相关文献

参考文献15

  • 1Kluge K C.SAMLOS.A 2-D simultaneous localization and mapping algorithm based on lines of sight[C]//Proceedings of IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 2003 ~ 438-443.
  • 2Davison A J, Gonz alez Cid Y, Kita N.Real-time 3D SLAM with wide-angle vision[C]//Proceedings of the 5th IFAC/ EURON Symposium on Intelligent Autonomous Vehicles Instituto Superior T6cnieo, Lisboa, Portugal.[S.1.] : Elsevier, 2004.
  • 3Guivant J E.Effcient simultaneous localization and mapping in large environments[D].Sydney, Australia: University of Sydney, 2002.
  • 4Devy M, Bulata H.Multi-sensory perception and hetero- geneous representations for the navigation of a mobile robot in a structured environment[C]//Proceedings of the Symposium on Intelligent Robot Systems, Lisbonne.[S.1.]: Springer, 1996: 361-368.
  • 5Wijesoma W S, Perera L D L, Adams M D.Navigation in complex unstructured environments[C]//Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004 : 167-172.
  • 6Miro J V, Dissanayake G, Zhou Weizhen.Vision-based SLAM using natural eatures in indoor environments[C]// Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2005: 151-156.
  • 7Guivant J, Nebot E, Baiker S.Autonomous navigation and map building using laser range sensors in outdoor applica- tions[J].Journal of Robotic Systems,2000,17(10) : 565-583.
  • 8Bailey T.Mobile robot loealisation and mapping in exten- sive outdoor environments[D].Sydney, Australia: University of Sydney, 2002.
  • 9Guivant J, Nebot E,Nieto J, et al.Navigation and mapping in large unstructured environments[J].The International Journal of Robotics Research,2004,23(4) :449-472.
  • 10Munguia R,Grau A.Closing loops with a virtual sensor based on monocular SLAM[J].IEEE Transactions on Instru- mentation and Measurement, 2009,58 (8) : 2377-2384.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部