期刊文献+

小集合数条件下的数据同化策略研究 被引量:1

Data assimilation strategy research with small ensembles circumstance
下载PDF
导出
摘要 基于集合的数据同化方法近年来得到广泛的重视和研究,已经逐步实验在业务大气数据同化系统中来替代变分类方法。集合Kalman滤波方法高度依赖于集合的大小,集合数过小会带来欠采样,协方差低估,滤波发散和远距离的虚假相关等问题。局地化技术可以有效改善小集合带来的相关问题。在Lorenz-96模型的基础上,研究有无局地化的效果差异,探讨小集合条件下的局地化技术的优劣性;提出一种基于功率谱密度(PSD)判断集合数据同化效果的办法。实验证明:在有限集合数下,采用Kalman增益值和PSD可以评价同化效果,结合局地化技术,可以获得效率更高的同化算法。 In recent year, widely attentions have been paid to ensemble-based data assimilation methods and application researches have been carried out to test in the operational data assimilation systems in order to replace the variational data assimilation systems. Ensemble Kalman Filter(EnKF)methods depend highly on the sizes of the ensemble. If ensemble numbers are too small, they will bring the related issues such as under sampling, covariance underestimation, filter divergence and distanced spurious correlations. Local technology can effectively solve the related problems in the small ensembles circumstances. On the basis of the Lorenz-96 model, this paper studies the differences of data assimilation with or without localization and discusses the advantages of local analysis under the condition of small ensemble. It develops a method based on Power Spectral Density(PSD)to judge the effect of ensemble data assimilation. The results show that with a finite ensemble of numbers, Kalman gain values and PSD can be used to evaluate the assimilation effect combined with the local technology.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第7期209-214,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.41461078 No.41061038) 甘肃省科技支撑计划(No.1204GKCA067)
关键词 数据同化 Lorenz-96模型 集合KALMAN滤波 协方差局地化 局地化分析 data assimilation lorenz-96 model covariance localization local analysis
  • 相关文献

参考文献20

  • 1李新,摆玉龙.顺序数据同化的Bayes滤波框架[J].地球科学进展,2010,25(5):515-522. 被引量:37
  • 2马建文,秦思娴.数据同化算法研究现状综述[J].地球科学进展,2012,27(7):747-757. 被引量:62
  • 3Burgers G, van Leeuwen P J, Evensen G.Analysis scheme in the ensemble Kalman filter[J].Monthly Weather Review, 1998,126(6) : 1719-1724.
  • 4Houtekamer P L, Mitchell H L.Data assimilation using an ensemble Kalman filter technique[J].Monthly Weather Review, 1998,126 : 796-811.
  • 5Anderson J L,Anderson S L.A Monte Carlo implemen- tation of the nonlinear filtering problem to produce en- semble assimilations and foreeasts[J].Monthly Weather Review, 1999,127 : 2741-2758.
  • 6Hamill T M,Whitaker J S, Snyder C.Distance-dependent filtering of background error covariance estimates in an ensemble Kahnan filter[J].Monthly Weather Review, 2001, 129( 11 ) :2776-2790.
  • 7Anderson J L.Exploring the need for localization in ensembledata assimilation using a hierarchical ensemble filter[J]. Physica D :Nonlinear Phenomena, 2006,230: 99-111.
  • 8Bishop C H, Hodyss D.Flow adaptive moderation of spurious ensemble correlations and its use in ensemble based data assimilation[J].Q J R Meteorol Soc, 2007, 133 : 2029-2044.
  • 9Anderson J L.An ensemble adjustment kalman filter for data assimilation[J|.Mon Wea Rev,2001,129:2884-2903.
  • 10Whitaker J S, Hamill T M.Ensemble data assimilation without perturbed observations[J].Monthly Weather Review, 2002,130:1913-1924.

二级参考文献99

共引文献90

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部