期刊文献+

基于改进微粒群算法的磁靶电流参数优化调整 被引量:1

The adjustment of magnetic target's current based on the modified particle swarm optimization algorithm
下载PDF
导出
摘要 为克服基本微粒群算法易早熟的缺点,建立一种基于改进微粒群算法的磁靶电流参数优化调整模型。该方法采用一种非线性递减函数对惯性权重参数进行调整,并通过绘制的磁场模拟精度随电流参数个数的变化趋势图,确定一定精度要求下的最佳电流参数个数。仿真结果表明,通过该方法优化电流参数后,不仅保证了磁靶的模拟精度,而且所需的电流个数最少,符合工程实际。 The problem of adjustment of magnetic target's current is the most important parameter for target,because the result decide the effect of both target's simulate and provide target. In order to overcome the difficulty that standard particle swarm optimization algorithm is easy to be premature convergence,an adjustment model of magnetic target' s current which is based on the Modified Particle Swarm Optimization(MPSO) algorithm has been proposed in this paper. With this method,we use a nonlinear function to adjust the inertia weight in order to improve the ability of getting out of the local optimization and we can get the best values with the least number of current according to a trend line of error and number of current. At last,the good result has been validated by a simulation.
出处 《舰船科学技术》 北大核心 2015年第3期73-76,共4页 Ship Science and Technology
基金 国家海洋专项基金资助项目(420050101)
关键词 磁靶 电流 改进微粒群 惯性权重 magnetic target current modified particle swarm optimization inertia weight
  • 相关文献

参考文献10

二级参考文献45

  • 1丁海军,陈佑健.蚁群算法的现状与研究进展[J].河海大学常州分校学报,2005,19(1):5-9. 被引量:12
  • 2翁行泰,曹梅芬.潜艇感应磁场的三维有限元法计算研究[J].上海交通大学学报,1994,28(5):69-76. 被引量:19
  • 3周国华,刘大明.基于逐步回归法的潜艇高空磁场仿真[J].海军工程大学学报,2005,17(5):82-85. 被引量:13
  • 4郭成豹,张晓锋,肖昌汉,刘大明.采用随机微粒群算法的舰船消磁系统优化调整[J].哈尔滨工程大学学报,2005,26(5):565-569. 被引量:18
  • 5王金根 龚沈光 刘胜道.磁性目标的高精度建模方法.海军工程大学学报,2001,13(3):49-52.
  • 6Kennedy J, Eberhart R C. Particle Swarm Optimization[ C]. Piscataway: Proceedings of the IEEE International Conference on Neural Networks. 1995:1942- 1948.
  • 7Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[ C]. Soul: Proceedings of the IEEE Conference on Evolutionary Computation, 2001 : 101 - 106.
  • 8Noel M M, Jannett T C. Simulation of a new hybrid particle swarm optimization algorithm[C]. Atlanta: Proc of the 36th South-eastern Symposium on System Theory, 2004:150- 153.
  • 9Clerc M, Kennedy J. The Particle Swarm: Explosion, stability and Convergence in a Multi- Dimensional Complex Space[J]. IEEE Transaction on Evolutionary Computation, 2002,6( 1 ) :58 - 73.
  • 10Yao X, Liu Y, Lin G M. Evolutionary Programming Made Faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (2) :82 - 102.

共引文献62

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部