期刊文献+

基于氢键诱导的纳米金比色传感器实时检测脂肪酶活性 被引量:5

A Real-Time Colorimetric Sensor for Determination of Lipase Activity Based on Hydrogen-Bonding RecognitionInduced Color Change of Gold Nanoparticles
下载PDF
导出
摘要 以巯基乙酸甲酯(MT)修饰的纳米金(Au NPs)为探针,构建了比色生物传感器检测脂肪酶活性。在p H 6.5弱酸性条件下,脂肪酶水解MT-Au NPs上的酯键生成带负电荷的羧酸根;在p H 3.0的酸性条件下,探针间会产生强烈的氢键作用使Au NPs聚集,基于此可以检测脂肪酶活性。考察了温度、p H等因素对传感器响应信号的影响。MT-Au NPs溶液在650和520 nm处的吸光度比值A650/A520与脂肪酶活性大小在3.0×10^-4-4.5×10^-2U/m L范围内呈现良好的线性关系,检出限为2.25×10^-4U/m L(S/N=3)。测定了5种商品化脂肪酶的活性,实验结果与恒电位滴定法测定结果一致,证明本方法具有良好的实用性。 A colorimetric biosensor for detection of lipase activity was constructed by methyl thioglycolate( MT) modified gold nanoparticles( Au NPs). Under slightly acidic condition( p H = 6. 5),lipases catalyzed the hydrolysis of the ester bond of MT on the surface of MT-Au NPs,exposing carboxyl group. When p H was adjusted to p H = 3. 0,the hydrogen-bonding among carboxyl groups induced the aggregation of Au NPs,accompanying a color change,based on which the quantitative detection of lipase activity could be achieved.Effects of reaction temperature and p H on the detection of lipase activity were investigated. The absorbance ratio( A650/ A520) of the MT-Au NPs solution at 650 nm and 520 nm was linear with the lipase activity ranging from 3. 0 × 10^-4U / m L to 4. 5 × 10^-2U / m L and a detection limit down to 2. 25 × 10^-4U / m L( S / N = 3) was achieved. The proposed method was applied to detect the activity of five commercial lipase samples,and the results were consistent with those obtained with a p H-stat potentiometric titration method,demonstrating the practicability of this method.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2015年第4期484-489,共6页 Chinese Journal of Analytical Chemistry
基金 江苏省自然科学基金项目(No.BK2012822) 国家杰出青年科学基金(No.21225626) 国家高技术研究发展计划(No.2012AA021700) 国家自然科学基金(No.21106064)资助~~
关键词 脂肪酶 酶活性 纳米金 氢键 比色传感 Lipase Enzymatic activity Gold nanoparticles Hydrogen-bonding Colorimetric sensor
  • 相关文献

参考文献14

  • 1Zhu Y T, Jia Y W, Liu Y M, Liang J, Ding L S, Liao X. J. Agric. Food Chem. , 2014, 62(44) : 10679-10686.
  • 2Nielsen A V F, Andric P, Nielsen P M, Pedersen L H. Langmuir. , 2014, 30(19) : 5429-5434.
  • 3Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev. , 2012, 112(5) : 2739-2779.
  • 4Yang G, Wu J P , Xu G, Yang L R. Colloids. Surf. B. , 2010, 78(2) : 351-356.
  • 5Ferrato F, Carriere F, Sarda L, Verger R. Method. Enzymol. , 1997, 286:327-347.
  • 6Francisco J P, Manue F, Oscar M N. Biotechnol. Tech. , 1998, 12(3) : 183-186.
  • 7Jette J F, Ziomek E. Anal. Biochern. , 1994, 219:256-260.
  • 8Hurter E, Maysinger D. Trends. Pharmaco. Sci. , 2013, 34(9) : 497-507.
  • 9Kim G B, Kim K H, Park Y H, Ko S, Kim Y. Biosens. Bioelectron. , 2013, 41 ( 1 ) : 833-839.
  • 10Zhang L, Zhao J, Jiang J, Yu R. Chem. Commun. , 2012, 48 (89) : 10996.

二级参考文献14

  • 1Fariha H, Aamer A S, Abdul H. BiotechnologyAdvances, 2009, 27(6): 782-798.
  • 2Josana M M, Bruna Z C, Valéria M G, Robert F H, Maria I R, Nadia K, Aneli M. Enzyme and Microbial Technology, 2009, 45(6-7): 426-431.
  • 3Ngando G F, Dhouib R, Carrière F, Amvam Zollo P H, Arondel V. Plant Physiology and Biochemistry, 2006, 44(10):611-617.
  • 4Muhammad M, Kazunori N, Noriho K, Masahiro G. Biochemical Engineering Journal, 2010, 48(3) : 295-314.
  • 5Rajkumar T, Ranga R G. Materials Letters, 2008, 62(25) : 4134-4136.
  • 6Suarez. P A Z, Dullius J E L, Einloft S, De Souza R F. Dupont J. Polyhedron, 1996, 15(7) : 1217-1219.
  • 7Yukihiro Y, Gunzi S. Journal of Materials Chemistry, 2006, 16(13): 1254-1262.
  • 8Sibel F, Zerrin S. Food Research International, 1997, 30(4): 171-175.
  • 9Monier M, El- Sokkary A, Sarhan A A. Reactive&Functional Polymers, 2010, 70(2): 122-128.
  • 10Zhao H, Gary A B, Zhi Y S, Olarongbe O. Journal of Molecular Catalysis B: Enzymatic, 2009, 57(1- 4): 149-157.

共引文献3

同被引文献39

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部