期刊文献+

基于模糊自适应卡尔曼滤波的大气数据辅助姿态算法 被引量:3

Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter
原文传递
导出
摘要 针对中低精度航姿参考系统(AHRS)在机体机动时不能利用加速度计修正水平姿态,以及噪声统计特性随实际工作情况变化的问题,提出了一种基于模糊自适应卡尔曼滤波的大气数据辅助姿态解算的方法。首先,考虑大气数据系统和航姿参考系统的优势,利用真空速、攻角和侧滑角等大气数据信息对非重力加速度进行补偿,以辅助水平姿态解算;其次,基于模糊自适应卡尔曼滤波原理,对观测模型的参数进行估计和修正,以实现水平姿态的最优估计;最后,选取某型飞机的试飞数据进行仿真验证。仿真结果表明,该方法可使飞机的水平姿态估计精度达到1.3°,且在偏差较大时有明显的纠偏作用。因此,相对于无机动加速度补偿和常规卡尔曼滤波来说,该方法能够更好地进行姿态估计,具有一定的实用价值。 Aimed at solving problems that accelerometers cannot be utilized in maneuvering carriers to modify its horizontal attitude and that noise statistical properties change with the actual working conditions in low accuracy attitude and heading reference system(AHRS),an air data assisted attitude calculating method based on fuzzy adaptive Kalman filter is proposed.Firstly,for assisting horizontal attitude calculation,an attitude algorithm is presented to make use of air data,such as true airspeed,angle of attack and sideslip angle information to compensate maneuvering acceleration,combining the advantages of both air data system and AHRS.Secondly,estimating and modifying parameters of the observer model and system characteristics is processed based on fuzzy adaptive Kalman filter in order to realize optimal estimation of horizontal attitude.Finally,simulation of flight test data from a type aircraft flight is conducted.Simulation results demonstrate that the accuracy of attitude angels reaches 1.3°,and it plays a significant role in correcting large deviations.Thus,to non-compensated maneuvering acceleration algorithm and conventional Kalman filter,this method is superior in attitude estimation and has practical value.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第4期1267-1274,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(91116002 91216304 61333011 61121003)~~
关键词 姿态算法 大气数据系统 模糊逻辑 自适应算法 卡尔曼滤波 attitude algorithm air data system fuzzy logic adaptive algorithm Kalman filter
  • 相关文献

参考文献18

二级参考文献98

共引文献392

同被引文献40

  • 1张斌,于盛林,邵笑杰,陈芳.嵌入式飞行参数传感系统的设计与可行性验证[J].测控技术,2004,23(z1):396-398. 被引量:5
  • 2周建军,王秀,张睿,刘刚,马伟,冯青春.农机车载GPS和DR组合导航系统定位方法![J].农业机械学报,2012,43(S1):262-265. 被引量:13
  • 3赵颖,陈兵旗,王书茂,代峰燕.基于机器视觉的耕作机器人行走目标直线检测[J].农业机械学报,2006,37(4):83-86. 被引量:58
  • 4卞鸿巍,金志华,王俊璞,田蔚风.组合导航系统新息自适应卡尔曼滤波算法[J].上海交通大学学报,2006,40(6):1000-1003. 被引量:53
  • 5Samuel C,Tang L,Abplanalp P.GPS-guided modular design mobile robot platform for agriculture applications. 2013Seventh International Conference on Sensing Technology . 2013
  • 6Robati J,Navid H,Rezaei M,et al.Automatic guidance of an agricultural tractor along with the side shift control of the attached row crop cultivator. Journal of Agricultural Science and Technology . 2012
  • 7English A,Ross P,Ball D,et al.Vision based guidance for robot navigation in agriculture. 2014 IEEE International Conference on Robotics&Automation (ICRA) . 2014
  • 8A. Fakharian,Thomas Gustafsson,M. Mehrfam.Adaptive Kalman Filtering Based Navigation:An IMU/GPS:Integration Approach. International Conference on Networking, Sensing and Control . 2011
  • 9Liu, Hang,Nassar, Sameh,El-Sheimy, Naser.Two-filter smoothing for accurate INS/GPS land-vehicle navigation in urban centers. IEEE Transactions on Vehicular Technology . 2010
  • 10Thomas Bell.??Automatic tractor guidance using carrier-phase differential GPS(J)Computers and Electronics in Agriculture . 2000 (1)

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部