期刊文献+

Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation 被引量:1

Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation
下载PDF
导出
摘要 A piece-wise linear planar neuron model with periodic stimulation which can mimic the behavior of bursting is explored. The periodic bursting with three frequencies can be observed in numerical simulation. We present an analysis of bursting in this non-smooth non-autonomous system by considering the system as a generalized autonomous system and introduce an appropriate form of the associated generalized equilibrium solution. The bifurcation mechanism of bursting as well as the coexistence of three frequencies is investigated in detail. A piece-wise linear planar neuron model with periodic stimulation which can mimic the behavior of bursting is explored. The periodic bursting with three frequencies can be observed in numerical simulation. We present an analysis of bursting in this non-smooth non-autonomous system by considering the system as a generalized autonomous system and introduce an appropriate form of the associated generalized equilibrium solution. The bifurcation mechanism of bursting as well as the coexistence of three frequencies is investigated in detail.
作者 季颖 王亚伟
机构地区 Faculty of Science
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期1-4,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11302086,11374130,11474134 and 11402226 the Natural Science Foundation of Jiangsu Province under Grant No BK20141296 the Post-doctoral Science Fund of China under Grant No 2014M561574 the Post-doctoral Science Fund of Jiangsu Province under Grant No 1302094B
  • 相关文献

参考文献20

  • 1Johnson S W, Seutin V and North R A 1992 Science 258 665.
  • 2Ivanchenko M V, Osipov G V, Shalfeev V D and Kurths J 2007 Phys. Rev. Lett. 98 108101.
  • 3Ji Y and Bi Q S 2011 Chin. Phys. Lett. 28 090201.
  • 4Wang H X, Wang Q Y and Zheng Y H 2014 Sci. Chin. Technol. Sci. 57 872.
  • 5Gu H G and Chen S G 2014 Sci. Chin. Technol. Sci. 57 864.
  • 6Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500.
  • 7Chay T R, Fan Y S and'Lee Y S 1995 Int~ J. Bifur. Chaos 5 595.
  • 8Rinzel J 1985 Ordinary Partial Differential Equations (Berlin: Springer-Verlag).
  • 9Sherman A and Rinzel J 1992 Proc. Natl. Acad. Sci. USA 89 2471.
  • 10Tiesinga P H E 2002 Phys. Rev. E 65 041913.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部