期刊文献+

高速剪切辅助氧化还原法制备石墨烯 被引量:4

Preparation of Graphene by High Speed Shearing-assisted Oxidization-Reduction Method
下载PDF
导出
摘要 采用改进的Hummers法制备氧化石墨(GO),氧化石墨经高剪切分散乳化机高速剪切处理后进行超声波处理剥离得到氧化石墨烯,然后经水合肼还原得到石墨烯。利用激光粒度仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TGA)、激光拉曼光谱仪(Raman)和四探针测试仪等对氧化石墨和石墨烯的形貌及结构进行表征。将高剪切处理制备的石墨烯和未经高剪切处理制备的石墨烯进行对比,结果表明,高速剪切作用对氧化石墨的减薄和剥离有明显促进作用,有利于氧化石墨的还原,提高了石墨烯的制备效率和质量。 Graphite oxide (GO) was synthesized by modified Hummers method from natural flake graphite (GRA). GO was treated by high-speed shearing machine in high speed and was exfoliated to graphene oxide by ultra- sonic wave with ultrasonic cleaning machine. Hydrazine hydrate was added as reducing reagent to prepare reduced gra- phene oxide (RGO) by reflux reaction. GO and RGO were characterized by laser particle analyzer, SEM, XRD, FT- IR, TGA,Raman and four-probe tester. RGOs that were treated with high-speed shearing and untreated were com- pared. The characterization results showed that high-speed shearing promotes the thinning and exfoliation of graphene oxide, which was beneficial to the reduction of graphene oxide and improved the preparation efficiency and quality of graphene.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第8期29-32,61,共5页 Materials Reports
关键词 氧化石墨烯 石墨烯 高剪切 剥离 还原 graphene oxide, graphene, high-speed shearing, exfoliation, reduction
  • 相关文献

参考文献18

  • 1Novoselov K S, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004,306 (5696) : 666.
  • 2Kane C L. Materials science: Erasing electron mass [J]. Nature, 2005,438 (7065) ; 168.
  • 3Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008,321(5887) : 385.
  • 4Chae H K, Siberio-P6rez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004,427 (6974) : 523.
  • 5Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles [J]. Carbon, 2004,42 (14) ; 2929.
  • 6Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J]. Nano Lett,2008,9(1) :30.
  • 7Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfolia- ted graphite oxide [J]. Carbon, 2007,45(7): 1558.
  • 8Wang S, Qiu J, et al. Thermal expansion of graphene com- posites [J]. Macromolecules, 2009,42(14) : 5251.
  • 9Choucair M, Thordarson P, Stride J A. Gram-scale produc- tion of graphene based on solvothermal synthesis and sonica- tion [J]. Nature Nanotechnol, 2009,4(1) : 30.
  • 10Hassan H M A, Abdelsayed V, Abd E1 Rahman S K, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J]. J Mater Chem, 2009,19(23) : 3832.

二级参考文献1

共引文献5

同被引文献53

  • 1王黎东,费维栋.高效率低成本机械剥离制备石墨烯或氧化石墨烯的方法:中国,201010179119.1[P].2010-05-21.
  • 2Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296):666-669.
  • 3Yanwu Zhu, Shanthi Murali, Weiwei Cai, et al. Graphene and graphene oxide: synthesis, properties, and applications [J]. Advanced Materials, 2010, 22(35), 3906-3924.
  • 4Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
  • 5Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5296):666-669.
  • 6Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of singer-layer graphene [J]. Nano Letter, 2008, 8(3):902-907.
  • 7Chae H K, Siberio-perez D Y, Kim J, et al. A rote to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
  • 8Lee C G, Wei X D, Kysar J W, et al. Measurement of the the elastic properities and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):358-388.
  • 9Wallace P R. The band theory of graphite [J]. Phys Rev, 1947, 71(9):622-634.
  • 10Mcclure J W. Diamagnetism of graphite [J]. Phys Rev, 1956. 104(3):666-671.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部