期刊文献+

水基碳管纳米流体制备及其热物性实验研究 被引量:3

Experimental Study on Preparation and Thermal Properties of Water-based Carbon Nanotubes Nanofluids
下载PDF
导出
摘要 采用添加表面活性剂阿拉伯胶(GA)的方法制备碳管纳米流体,并对不同长径比以及经球磨、酸化处理的碳管纳米流体热物性进行了研究。通过透射电子显微镜和扫描电子显微镜观察表明,所制备的碳管纳米流体具有很好的分散性和稳定性。碳管纳米流体热物性实验结果表明,碳管的比表面积和直线度是碳管长径比影响纳米流体热导率的主要因素。碳管经球磨处理时,随球磨时间延长,碳管长径比和直线度先后对纳米流体热导率提升起主导作用,碳管酸化处理后,改善了其分散性并降低了接触热阻,这是纳米流体热导率提高的主要因素。但随着碳管酸化时间的延长,碳管长径比起主导作用。碳管纳米流体的粘度主要受碳管分散性和直线度的影响。 Gum arabic (GA) was used as surfactant prepare carbon nanotubes nanofluids,and the thermal pro- perties of carbon nanotubes nanofluids with different aspect ratio or treated by milling and acidification were studied. According to transmission electron microscopy and scanning electron microscopy research, the carbon nanotubes nanofluids had good dispersibility and stability. The experimental results of carbon nanotubes nanofluid thermal pro- perties showed that carbon nanotubes surface area and straightness were the main factors that affecting the thermal conductivity of nanofluids. With ball milling time extended, carbon nanotubes aspect ratio and straightness successively played a leading role in enhancing the thermal conductivity of nanofluids. The dispersion of carbon nanotubes improved and the eontaet thermal resistance reduced after aeidifieation, whieh was the main factor leading to the thermal conduc- tivity of nanofluids improved. But with the acidifieation time increased, the aspect ratio of carbon nanotubes played a leading role. Its viscosity was mainly affected by the carbon nanotubes dispersion and straightness.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第8期79-82,99,共5页 Materials Reports
关键词 碳纳米管 纳米流体 热物性 长径比 强化机理 carbon nanotubes, nanofluids, thermal properties, aspect ratio, strengthening mechanism
  • 相关文献

参考文献11

  • 1Lee S,Choi S U S, Li S, et al. Measuring thermal conductivi- ty of fluids containing oxide nanoparticles[J]. J Heat Trans- fer, 1999,121 : 280.
  • 2Masuda H, Ebata A, Teramae K, et al. Alternation of ther- mal conductivity and viscosity of liquid by dispersing ultra- fine particles (dispersion of "/-A12 03, SiO2 and TiO2 ultra- fine particles) [J]. NetsuBussei(Japan), 1993,7 : 227.
  • 3Keblinski P, Phillpot S R,Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J]. Int J Heat Mass Transfer, 2002,45 : 855.
  • 4姚武,陈雷,刘小艳.碳纳米管分散性研究现状[J].材料导报,2013,27(9):47-50. 被引量:19
  • 5宣益民,胡卫峰,李强.纳米流体的聚集结构和导热系数模拟[J].工程热物理学报,2002,23(2):206-208. 被引量:12
  • 6宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470. 被引量:83
  • 7李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723. 被引量:31
  • 8赵忠超,张东辉,陈育平,周根明.纳米流体强化传热实验研究进展[J].江苏科技大学学报(自然科学版),2011,25(1):44-48. 被引量:7
  • 9Sumio Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991,354 : 56.
  • 10Savas Berber, Young-Kyun Kwon, David Tomdnek. Unu- sually high thermal conductivity of carbon nanotube[J]. Phys Rev Lett,2000,84(20):4613.

二级参考文献52

共引文献142

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部