期刊文献+

不同抑制剂对乙酸降解产甲烷及产甲烷菌群结构的影响 被引量:5

Effects of selective methanogenic inhibitors on methanogenesis and methanogenic communities in acetate degrading cultures
原文传递
导出
摘要 【目的】研究不同温度条件下的石油烃降解产甲烷菌系中是否存在乙酸互营氧化产甲烷代谢途径。【方法】以3个不同温度条件的正十六烷烃降解产甲烷菌系Y15(15℃)、M82(35℃)和SK(55℃)作为接种物,通过乙酸喂养实验、并添加乙酸营养型产甲烷古菌的选择性抑制剂NH4Cl和CH3F,结合末端限制性片段长度多态性(terminal restriction fragment length polymorphism,T-RFLP)和克隆文库技术,分析乙酸产甲烷潜力及产甲烷古菌群落的演替趋势,推测产甲烷代谢途径的变化趋势。【结果】无论是否添加NH4Cl和CH3F,这3个菌系都可以利用乙酸生长并产生甲烷,但是添加NH4Cl和CH3F后产甲烷延滞期增加,最大比甲烷增长速率降低;只添加乙酸后,3个不同温度的菌系的古菌群落主要由乙酸营养型产甲烷古菌甲烷鬃毛菌属(Methanosaeta)组成,其丰度分别为92.8±1.4%、97.3±2.4%和82.8±9.0%;当添加选择性抑制剂NH4Cl,3个菌系中的Methanosaeta的丰度分别变为98.5±0.7%、87.4±4.8%和6.1±8.6%,中温菌系M82中氢营养型产甲烷古菌甲烷袋装菌属(Methanoculleus)的相对丰度增加到12.6±4.0%,高温菌系SK中另一类氢营养型产甲烷古菌甲烷热杆菌属(Methanothermobacter)增至84.3±1.5%;当添加选择性抑制剂CH3F,Methanosaeta丰度分别降至77.1±14.5%,86.4±6.1%和35.8±7.8%,低温菌系Y15中的甲烷八叠球菌属(Methanosarcina)增高(15.7±21%),这类产甲烷古菌具有多种产甲烷代谢途径,M82中Methanoculleus丰度上升到13.6±13.1%,SK中Methanothermobacter丰度增大到48.5±11.2%。【结论】在低温条件下,菌系Y15可能主要通过乙酸裂解完成产甲烷代谢,在中高温条件下,菌系M82和SK中可能存在乙酸互营氧化产甲烷代谢途径,并且甲烷的产生分别通过不同种群的氢营养型产甲烷古菌来完成。 [ Objective] We evaluated the role of syntrophic acetate oxidation coupled with hydrogenotrophic methanogens in three different methanogenic consortia. [ Methods] Three methanogenic hexadecane degrading consortia named Y15, M82 and SK were taken from the same oily sludge of Shengli oil-field and enriched. They were incubated at 15, 35 and 55℃ , respectively. The consortia amended with acetate and inhibitors of NH4Cl or CH3F were further transferred and incubated at corresponding temperatures. The cultures atlate logarithmic phase were collected for terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and phylogenetic analysis of 16S rRNA gene fragments. [ Results] Gas chromatograph analysis showed that all of the consortia could grow and produce methane, but the lag phase was delayed and the growth rate was retarded in the cultures amended with inhibitor. Combination analysis of T-RFLP and clone library revealed the predominance of obligate aceticlastic Methanosaeta in the acetate cultures of Y15, M82 and SK. Under the mesophilic and thermophilic conditions, after add inginhibitor the relative abundance of aceticlastic methanogen decreased but hydrogenotrophic methanogen increased. [ Conclusion ] Syntrophic acetate oxidation during methanogenic degradation of petroleum hydrocarbons occurs under mesophilic and thermophilic conditions, although the situation at low temperature seems uncertain.
出处 《微生物学报》 CAS CSCD 北大核心 2015年第5期587-597,共11页 Acta Microbiologica Sinica
基金 国家自然科学基金项目(41173088 31370060) 国家"863计划"(2013AA064401) 中国农业科学院基本科研业务费(2013ZL001)~~
关键词 厌氧烃降解 互营乙酸氧化 产甲烷途径 古菌群落 NH_4Cl和CH_3F anaerobic degradation of petroleum hydrocarbons, syntrophic acetate oxidation, methanogenesis, archaealcommunity structure, NH_4Cl and CH_3F
  • 相关文献

参考文献70

  • 1Ferry J G. Biochemistry of methanogenesis. Critical Reviews in Biochemistry and Molecular Biology, 1992, 27 (6): 473-503.
  • 2Yilmaz V, Ince- Yilmaz E, Yilmazel YD. Is aceticlastic methanogen composition in full-scale anaerobic processes related to acetate utilization capacity? Applied Microbiology and Biotechnology, 2014, 98 (11) : 5217-5226.
  • 3Dolfing J. Thermodynamic constraints on syntrophic acetate oxidation. Applied and Environmental Microbiology, 2014, 80(4): 1539-1541.
  • 4Schn tirer A, Schink B, Svensson BH. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic Bacteriology, 1996,46(4): 1145-1152.
  • 5Westerholm M, Roos S, Schnurer A. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate - oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiology Letters, 2010, 309 (1) : 100-104.
  • 6Westerholm M, Roos S, Schntirer A. Tepidanaero bacteracetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium- enriched mesophilic methanogenic processes. Systematic and Applied Microbiology, 2011,34(4): 260-266.
  • 7Hattori S, Kamagata Y, Hanada S. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(4): 1601-1609.
  • 8Balk M, Weijma J, Stams AJM. Thermotogalettingae sp. nov. , a novel thermophilic, methanol-degradingbacterium isolated from a thermophilic anaerobic reactor. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(4): 1361-1368.
  • 9Lee MJ, Zinder SH. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-C02. Applied and Environmental Microbiology, 1988,54(1): 124-129.
  • 10Hao LP, i.u F, He PI. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations. Environmental Science & Technology, 2010, 45 (2) : 508 -513.

二级参考文献36

共引文献8

同被引文献111

  • 1陈彪,陈敏,钱午巧,翁伯琦,徐庆贤.规模化养猪场粪污处理工程设计[J].农业工程学报,2005,21(2):126-130. 被引量:36
  • 2Morris BEL, Henneberger R, Huber H, Eichinger CM. Microbial syntrophy: interaction for the common good [J]. FEMS Microbiol Rev, 2013, 37: 384-406.
  • 3Mcinerney MJ, Sieber JR, Gunsalus RP. Microbial syntrophy ecosystem level biochemical cooperation - genomic sequences reveal systems required to produce hydrogen and formate, plus other hallmarks of the syntrophic lifestyle [J]. Microbe, 2011, 6 (11): 479-485.
  • 4Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The Prokaryotes [M]. 3rd ed. New York: Springer, 2006: 309-335.
  • 5Stams AJM, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea [J]. Nat Rev Microbiol, 2009, 7 (8): 568-577.
  • 6Kato S, Watanabe K. Ecological and evolutionary interactions in syntrophic methanogenic consortia [J]. Microbes Environ, 2010, 25 (3): 145-151.
  • 7Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol Mol Biol R, 1997, 61 (2): 262-280.
  • 8Mcinerney MJ, Sieber JR, Gunsalus RP. Syntrophy in anaerobic global carbon cycles [J]. Curr Opin Biotechnol, 2009, 20: 623-632.
  • 9Kouzuma A, Kato S, Watanabe K. Microbial interspecies interactions: recent findings in syntrophic consortia [J]. Front Microbiol, 2015, 6: 1-8.
  • 10Sofer SS. Biomass Conversion Processes for Energy and Fuels [M]. New York: Plenum Press, 1981: 277-296.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部