期刊文献+

制冷剂流动方向对微通道蒸发器房间空调器性能影响的对比试验研究 被引量:4

Experimental Comparison on Micro-Channel Evaporator in Room Air Conditioner Under Various Refrigerant Flow Directions
下载PDF
导出
摘要 试验研究UF(Upward Flow,制冷剂在微通道蒸发器中自下而上流动)和DF(Downward Flow,制冷剂在微通道蒸发器中自上而下流动)2种制冷剂流动方式下微通道房间空调器的制冷性能,并对其名义制冷工况下制冷剂配液分布进行红外成像.试验结果表明,随着室内空气干球温度的上升,2种方式的制冷量和能效比均不断上升;名义制冷工况下,UF方式优于DF方式,前者的制冷量和能效比EER比后者分别高出21.52%和14.94%;红外成像分析表明,UF方式分液效果优于DF方式.但是,UF方式蒸发器尾部制冷剂分配较少,换热效果下降. Experimental comparison on the performance is conducted between Upward Flow( the refrigerant flows from down to up) and Downward Flow( the refrigerant flows from up to down) in a room air conditioner using micro-channel evaporator.Refrigerant distribution of nominal refrigeration condition in the micro-channels is made in infrared thermographs. Experimental results show that the cooling capacity and EER improve with the increase of ambient temperatures. Experimental results reveal a mean increase of 21.52% in cooling capacity and an increase of 14.94% in EER in the unit using UF model than that using DF model under nominal refrigeration condition. The infrared thermographs elaborate that UF model is superior to DF. However,refrigerant distribution in the latter tubes becomes worse,which deserves more effort.
出处 《南京师范大学学报(工程技术版)》 CAS 2015年第1期21-24,共4页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 江苏省高校自然科学基金(12KJB470010) 江苏省产学研前瞻性项目(BY2013001-05 BY2014001-02) 南京师范大学科技成果转化基金(2013-07)
关键词 制冷剂流动方向 微通道蒸发器 房间空调器 环境温度 红外成像 refrigerant flow direction micro-channel evaporator room air conditioner ambient temperature infrared thermographs
  • 相关文献

参考文献8

二级参考文献53

  • 1刘洪胜,陈江平,陈芝久.CO_2充注量对跨临界轿车空调系统性能的影响[J].化工学报,2005,56(8):1426-1432. 被引量:12
  • 2张良俊,吴静怡,王如竹.充注量对小型热泵热水器性能影响的实验及分析[J].上海交通大学学报,2006,40(8):1307-1311. 被引量:29
  • 3张恺,张小松,陈向阳,黄亚娟,郭艳萍,黄耀华.空调器空气焓差法性能测试不确定度分析[J].流体机械,2006,34(11):72-75. 被引量:20
  • 4Horiki Sachiyo, Nakamura Tomoshige, Osakabe Masahiro. Thin flow header to distribute feed water for compact heat exchanger [J]. Experimental Thermal and Fluid Science, 2004, 28:201-207.
  • 5Kulkarni Tushar, Bullard Clark W, Cho Keumnam. Header design trade-offs in microehannel evaporators [J]. Applied Thermal Engineering, 2004, 24: 759-776.
  • 6Shi Junye, Qu Xiaohua, Qi Zhaogang, Chen Jiangping. Investigating performance of microchannel evaporators with different manifold structures [J]. International Journal of Refrigeration, 2011, 34 (1): 292-302.
  • 7Lin Jianzhong(林建忠),Ruan Xiaodong(阮晓东),Chen Bangguo(陈邦国),Wang Jianping(王建平),Zhou Jie(周洁),Ren Anlu(任安禄).Fluid Mechanics(流体力学)[M].Beijing:Tsinghua University Press,2005.
  • 8Pacio Julio C, Dorao Carlos A. A study of the effect of flow maldistribution on heat transfer performance in evaporators [J ]. Nuclear Engineering and Design, 2010, 240: 3868-3877.
  • 9Ahmad Mohammad, Berthoud Georges, Mercier Pierre. General characteristics of two-phase flow distribution in a compact heat exchanger [J]. International Journal of Heat and Mass Transfer, 2009, 52:442-450.
  • 10Habib M A, Ben-Mansour R, Said S A M, Al-Qahtani M S, AI-Bagawi J J, Al Mansour K M. Evaluation of flow maldistribution in air-cooled heat exchangers [ J ]. Computers & Fluids, 2009, 38:677-690.

共引文献32

同被引文献33

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部