期刊文献+

Word2vec的核心架构及其应用 被引量:68

The Architecture of Word2vec and Its Applications
下载PDF
导出
摘要 神经网络概率语言模型是一种新兴的自然语言处理算法,该模型通过学习训练语料获得词向量和概率密度函数,词向量是多维实数向量,向量中包含了自然语言中的语义和语法关系,词向量之间余弦距离的大小代表了词语之间关系的远近,词向量的加减代数运算则是计算机在"遣词造句".近年来,神经网络概率语言模型发展迅速,Word2vec是最新技术理论的合集.首先,重点介绍Word2vec的核心架构CBOW及Skip-gram;接着,使用英文语料训练Word2vec模型,对比两种架构的异同;最后,探讨了Word2vec模型在中文语料处理中的应用. Word2vec is a combination of neural probabilistic language model,which includes CBOW model and Skipgram model in terms of architecture. This paper will introduce the technology of Word2 vec. Firstly,the paper will elaborate the theory of Word2 vec architecture; secondly,an English corpus which is extracted from Wikipedia will be used to train the model,and a set of results will be shown; lastly,the application of Word2 vec in the language of Chinese will be explored,a result will also be presented precisely.
出处 《南京师范大学学报(工程技术版)》 CAS 2015年第1期43-48,共6页 Journal of Nanjing Normal University(Engineering and Technology Edition)
关键词 自然语言处理 Word2vec CBOW Skip-gram 中文语言处理 NPL Word2vec CBOW Skip-gram Chinese-language-processing
  • 相关文献

参考文献13

  • 1Bengio Y,Ducharme R, Vincent P. A neural probabilistic language model[ J]. Journal of Machine Learning Research,2003,3(7) :1 137-1 155.
  • 2Michael U G, AapoHyvrinen. Noise-contrastive estimation of unnormalized statistical models,with applications to natural imagestatistics[ J] ? The Journal of Machine Learning Research,2012,13( 2) ;307-361.
  • 3Tomas M,Chen K,Corrado G. Efficient estimation of word representations in vector space[ EB/OL].( 2013-08-18) [ 2013-09-07]http : / / arxiv. org/ abs/1301.3781.
  • 4Bengio Y,LeCun Y. Scaling Learning Algorithms Towards AI [ M ]//Large-Scale Kernel Machines. Cambridge: MIT Press,2007.
  • 5Mikolov T, Karafi M, Burget L, et al. Recurrent neural network based language model [ C]//Proceedings of Interspeech.Chiba,Japan:MIT Press,2010: 131 -138.
  • 6Mikolov T,Ilya S,Kai C,et al. Distributed representations of words and phrases and their compositionality[EB/OL]. [2013-10-16]http:// arxiv.org/ abs/1310.4546.
  • 7Elman J. Finding structure in time[ J]. Cognitive Science, 1990,14(7) : 179-211.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by back-propagating errors[ J]. Nature, 1986,323(9) :533-536.
  • 9Andriy M,Yee W T. A fast and simple algorithm for training neural probabilistic language models[ EB/OL] .(2009-10-12)[2012-06-10] http : / / arxiv. org/ftp/arxiv/papers/12061.
  • 10Frederic M, Yoshua B. Hierarchical probabilistic neural network language model [ C ] //Proceedings of the International Work-shop on Artificial Intelligence and Statistics. Barbados : MIT Press, 2005 : 246-252.

二级参考文献25

  • 1McCarthyJ. Programs with common sense[CJ IIProc of the National Physics Lab. London: HMSO. 1958: 300-307.
  • 2Lenat D. Guha R. Building Large Knowledge-Based Systems: Representation and Inference in the CYC Project[M]. Boston: Addison-Wesley. 1989.
  • 3Miller A. WordNet: An online lexical database for English[J]. Communications of the ACM. 1995. 38(1]): 39-41.
  • 4Ponzetto S. Strube M. Deriving a large scale taxonomy from Wikipedia[CJ IIProc of the 22nd National Conf on Artificial Intelligence. Menlo Park. CA: AAAI Press. 2007: 1440- 1445.
  • 5Liu Kaipeng , Fang Binxing , Zhang Weizhe. Ontology emergence from folksonomies[CJ IIProc of the 19th ACM Int Conf on Information and Knowledge Management. New York: ACM. 2010: 1109-l118.
  • 6Na st ase V. Strube M. Transforming Wikipedia into a large scale multilingual concept network[J]. Artificial Intelligence. 2013.194(1): 62-8,5.
  • 7TangJ ie , Leung Hofung ? Luo Qiong , et al. Towards ontology learning from folksonomies[CJ IIProc of the 21st IntJoint Conf on Artificial Intelligence. Menlo Park. CA: AAAJ Press. 2009: 2089-2094.
  • 8Strube M. Ponzetto S. WikiRelatel Computing semantic relatedness using Wikipedia[C] IIProc of the 21st National Conf on Artificial Intelligence. Menlo Park. CA: AAAI Press , 2006: 1419-1424.
  • 9Gruber T. A translation approach to portable ontology specifications[J]. Knowledge Acquisition. 1993, 5 (2): 199- 220.
  • 10Bu Fan, Hao v?. Zhu Xiaoyan, Semantic relationship discovery with Wikipedia structure[CJ IIProc of the 22nd IntJoint Conf on Artificial Intelligence. Menlo Park. CA: AAAI Press, 2011: 1770-1775.

同被引文献578

引证文献68

二级引证文献421

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部