期刊文献+

具有标准发生率和脉冲干扰的SIRS传染病模型分岔分析 被引量:1

The Bifurcation Analysis of an SIRS Epidemic Model with Standard Incidence and Impulsive Perturbations
下载PDF
导出
摘要 本文同时考虑生育脉冲、垂直传染和脉冲治疗,建立一个带有标准发生率的SIRS传染病模型,从理论分析和数值模拟方面研究了SIRS传染病模型的动力学性质.首先利用Floquet乘子理论,证明了系统的平凡解、无病周期解和地方病周期解的存在性和稳定性;接着利用庞加莱映射、中心流形定理和分岔理论详细讨论了跨临界分岔和flip分岔,而且给出了能很好验证理论分析的数值结果;最后给出了生物学的解释和主要的结论. Birth pulse,vertical transmission,and pulse treatment are considered in an SIRS model. The dynamical behavior of an SIRS epidemic model with standard incidence is discussed by means of both theoretical and numerical ways.Firstly,by using Floquet theory,the existence and stability of the trivial solution,infection-free periodic solution,and epidemic periodic solution are proved. Secondly,the Poincare map,center manifold theorem,and bifurcation theorem are used to discuss transcritical bifurcation and flip bifurcation.The numerical results,which are illustrated with an example,are in good agreement with the theoretical analysis. Finally,biological explanations and main conclusions are given.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期1-7,共7页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(11162004) 广西自然科学基金(2012GXNSFAA053006) 广西研究生教育创新计划项目(YCSZ2014143)
关键词 SIRS模型 标准发生率 跨临界分岔 flip分岔 SIRS model standard incidence transcritical bifurcation flip bifurcation
  • 相关文献

参考文献10

  • 1朱玑,李维德,朱凌峰.具有脉冲出生和脉冲接种的SIR传染病模型[J].生物数学学报,2011,26(3):490-496. 被引量:9
  • 2Zeng G Z, Chen L S. SIV-SVS epidemic models with continuous and impulsive Vaccination strategy [ J ]. Journal of Theoretical Biology, 201 I, 280:108-116.
  • 3马之恩,周义仓,王稳地.传染病动力学的数学建模与研究[M].北京:科学出版社,2004:3-24.
  • 4周艳丽,王贺桥,王美娟,徐长永.具有脉冲预防接种的SIQR流行病数学模型[J].上海理工大学学报,2007,29(1):11-16. 被引量:10
  • 5Anderson R, May R. Infections Diseases of Human: Dynamics and Control [ M ]. Oxford: Oxford University Press, 1991 : 28-38.
  • 6Hua Z, Liu S, Wang H. Backward bifurcation of an epidemic model with standard incidence rate and treatment rate [ J ]. Non- linear Analysis: Real World Applications, 2008 (9) : 2 302- 2 312.
  • 7郭中凯,王文婷,李自珍.具有脉冲免疫接种的SEIRS传染病模型分析[J].南京师大学报(自然科学版),2013,36(2):20-26. 被引量:3
  • 8方玲玲,齐龙兴.一类SEIRS模型稳定性分析(英文)[J].南京师大学报(自然科学版),2013,36(3):21-30. 被引量:1
  • 9Rasband S N. Chaotic Dynamics of Nonlinear Systems[ M ]. New York :John Wiley and Sons, 1990:108-110.
  • 10Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathemati- cal Sciences [ M ]. New York : Springer-Verlag, 1983,42:178-180.

二级参考文献55

  • 1高淑京,滕志东.一类具饱和传染力和常数输入的SIRS脉冲接种模型研究[J].生物数学学报,2008(2):209-217. 被引量:14
  • 2石瑞青,原存德.按Logistic增长且具有连续预防接种和潜伏期密度依赖的SEIRS流行病模型[J].山西师范大学学报(自然科学版),2005,19(4):1-5. 被引量:1
  • 3庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 4Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses[J]. Mathematical Bioscience, 1998, 149(1):23-36.
  • 5Zhou J S, Hethcote H W. Population size density dependent incidence in models for diseases without immunity[J]. Journal of Mathematical Biology, 1994, 32(8):809-834.
  • 6Roberts M G, Jowett J. An SEI model with density dependent demographics and epidemiology[J]. Journal of Mathematics Applied in Medicine and Biology, 1996, 13(4):245 257.
  • 7Diekmann O, Kretzschmar M. Patterns in the effects of infections diseases on population growth[J]. Journal of Mathematical Biology, 1991, 29(6):539-570.
  • 8d'Onofrio A. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J]. Applied Mathematics and Computation, 2004, 151(1):181-187.
  • 9Stone L, Shulgin B, Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model[J]. Mathematical and Computer Modelling, 2000, 31(4-5):207-215.
  • 10Lu Z H, Chi X B, Chen L S. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]. Mathematical and Computer Modelling, 2002, 36(9-10):1039-1057.

共引文献20

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部