期刊文献+

一类浅水波模型的数值方法 被引量:1

Numerical Methods for a Class of Shallow Water Equation
下载PDF
导出
摘要 考虑BBM型非线性水波方程的数值方法.本文构造了二种半隐的数值格式.以BBM方程为例,严格分析了二种格式的稳定性与误差估计,证明了二种格式都是无条件稳定的.误差估计显示,线性Euler时间离散加谱Galerkin空间离散的收敛阶是O(Δt+N1-m),线性Crank-Nicolson时间离散加谱Galerkin空间离散的收敛阶是O(Δt2+N1-m).最后我们用数值例子讨论这两类方程解的长时间衰减率,并讨论扩散项、色散项、非线性项对解的衰减率的影响.数值例子表明,这两类浅水波方程的衰减率是:L2范接近-1/4;L∞范接近-1/2;H1半范接近-3/4,这与已知的理论结果是吻合的. We turn to study the numerical solution of the shallow water equation. We propose two different schemes to numerically solve this equation. A detailed analysis is carried out for these schemes,and we prove that the overall schemes are unconditionally stable. The error estimation shows that the linearized Euler schema in time plus Fourier spectral method in space is convergent with the convergence order O( Δt+N^1-m),and higher order convergences can be obtained if the second order backward differentiation or Crank-Nicolson schema are used to discretize the equation in time. At last,we use the proposed methods to investigate the asymptotical decay rate of the solutions to the shallow water wave equation. We equally discuss the role of the diffusion terms,the geometric dispersion and the nonlinearity respectively. The performed numerical experiment confirms that the decay rates in L^2-norm,L^∞-norm,and H^1-seminorm are very close to-1/4,-1/2,and-3/4 respectively. These numerical results are consistent with the known theoretical prediction.
作者 张俊 范馨月
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期32-40,共9页 Journal of Nanjing Normal University(Natural Science Edition)
基金 2013贵州财经大学引进人才项目 贵州省科学技术基金(黔科合J字[2013]2028号)
关键词 BBM方程 无条件稳定 有限差分法 谱方法 衰减率 BBM equation unconditionally stable finite difference method spectral method decay rate
  • 相关文献

参考文献21

  • 1Russell J. Report on waves [ C ]//14th Meeting of the British Association for the Advancement of Science.London, 1844:311- 390.
  • 2Korteweg D D J,deVries D G. On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves [ J ]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895,39 (240) : 422 - 443.
  • 3Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems [ J ]. Philosophical Trans Actions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1972,272( 1 220) :47-78.
  • 4Medeiros L A, Menzala G P. Existence and uniqueness for periodic solutions of the benjamin-bona-mahony equation [ J ]. SIAM Journal on Mathematical Analysis, 1977,8(5):792-799.
  • 5Albert J. Dispersion of low-energy waves for the generalized benjamin-bona-mahony equation[ J]. Journal of Differential Equa- tions, 1986,63 ( 1 ) : 117-134.
  • 6Albert J. On the decay of solutions of the generalized benjamin-bona-mahony equation [ J ]. Journal of Mathematical Analysis and Applications, 1989,141 (2) :527-537.
  • 7Biler P. Long time behavior of solutions of the generalized Benjamin-Bona-Mahony equation in two space dimensions [ D ]. Paris : Departement de Mathematiques, Universite de Paris-sud, 1991.
  • 8Amick C, Bona J, Schonbek M E. Decay of solutions of some nonlinear wave equations [ J ]. Journal of Differential Equations, 1989,81(1) :1-49.
  • 9Mei M. lq-decay rates of solutions for benjamin-bona-mahony-burgers equations [ J ]. Journal of Differential Equations, 1999, 158(2) :314-340.
  • 10Chen M, Dumont S, Dupaigne L,et al. Decay of solutions to a water wave model with a nonlocal viscous dispersive term [ J ]. Discrete Cont Dyn Syst-Ser A, 2010,27 (4) : 1 473-1 492.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部