期刊文献+

基于分水岭的高光谱图像分类方法 被引量:1

Hyperspectral Image Classification Method Based on Watershed
下载PDF
导出
摘要 近年来,高光谱图像的分类受到了广泛的关注,许多机器学习的方法都在高光谱图像上得到了应用,如SVM、神经网络、决策树等.为了提高分类精度,通常将图像的光谱信息与空间信息结合起来进行分类.本文提出了如何利用分水岭分割得到的空间信息来得到更精确的分类结果.首先利用分水岭得到图像区域信息,然后根据一个区域中是否含有训练样本而采取不同的策略得到该区域中所有点的类别.本文在两幅图像上分别用SVM和联合稀疏表示对该方法的有效性进行验证,实验结果表明该方法优于其他一些同类方法. Hyperspectral image classification has attracted a great deal of attention. Many machine learning methods have been applied in hyperspectral image classification,such as SVM,neural network and decision tree,etc. In order to increase classification performances,people usually integrate of spatial information into the classification process. In this paper,we will present how to use spatial information obtained by watershed segmentation to obtain a more accurate classification results. We obtained the regional imformation by watershed segment and then adopted different strategies to get the category of the points in an area according to the area whether it contains the training sample. SVM and the joint sparse representation are used on two images to verify the effectiveness of the proposed method. Experimental results show that our algorithm outperforming some other similar methods.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期91-97,共7页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金重点 面上(61432008 61272222)
关键词 分水岭 高光谱 图像分类 watershed hyperspectral image classification
  • 相关文献

参考文献16

  • 1Chen C H,Peter Ho P G. Statistical pattern recognition in remote sensing[J]. Pattern Recognition,2008,41 (9) :2 731-2 741.
  • 2Bali N, Mohammad-Djafari A. Bayesian approach with hidden Markov modeling and mean field a approximation for hyperspec- tral data analysis [ J ]. IEEE Trans on Image Process,2008,17 (2):217-225.
  • 3Hernandez-Espinosa C, Fernafidez-Redondo M, Torres-Sospedra J. Some experiments with ensembles of neural networks for classification of hyperspectral images [ J ]. ISNN, 2004 ( 1 ) : 912- 917.
  • 4Zhou H, Mao Z, Wang D. Classification of coastal areas by airborne hyperspectral image [ J ]. Proceedings of SPIE, 2005, 5 832:471-476.
  • 5Pal M, Mather M. Support vector machines for classification in remote sensing[ J ]. Int J Remote Sens,2005,26(5) :1 007-1 011.
  • 6Heikkinen V,Tokola T, Parkkinen J, et al. Simulated multispectral imagery for tree species classification using support vector machines[J]. IEEE Trans on Geosci Remote Sens,2010,48(3) :1 355-1 364.
  • 7Giorgos M, Jungho I, Caesar O. Support vector machines in remote sensing-A review [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66:247-259.
  • 8Fauvel M. Spectral and spatial methods for the classification of urban remote sensing data [ D ]. Reykejavik, Iceland: France and Faculty of Electrical and Computer Engineering, University of Iceland ,2007.
  • 9Farag A, Mohamed R, E1-Baz A. A unified framework for map estimation in remote sensing image segmentation [ J ]. IEEE Trans on Geosci Remote Sens,2005,43(7) :1 617-1 634.
  • 10Camps-Vails G,Gomez-Chova L, Munoz-Mari J, et al. Composite kernels for hyperspectral image classification [ J ]. IEEE Geosci Remote Sens Lett,2006,3( 1 ) :93-97.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部