期刊文献+

基于自适应ε占优的多目标差分演化算法 被引量:1

Differential Evolution Algorithm for Multi-Objective Optimization Based on Adaptive ε-Dominance
下载PDF
导出
摘要 求解多目标优化问题最重要的目的就是获得尽可能逼近真实最优解和分布性良好的非支配解集.为此,本文提出了一种基于自适应ε占优的正交多目标差分演化算法,该算法具有如下特征:1.利用正交设计和连续空间的量化来产生具有良好分布性的初始演化种群,不仅能降低算法的时间复杂度,也能使演化充分利用种群中的个体;2.采用在线Archive种群来保存算法求得的非支配解,并用自适应的ε占优更新Archive种群,以自适应的方式维持种群的多样性、分布性.最后通过5个标准测试函数对算法的有效性进行了测试,并与其他的一些多目标优化算法进行了对比,实验结果显示,算法能够很好地逼近Pareto前沿,并具有良好的分布性. The purpose to solve multi-objective optimization is to get solutions closing to the true Pareto front as much as possible and having good diversity. To meet these two demands,an algorithm is proposed in this paper,which has these characteristics: firstly,it adopts the orthogonal design method with quantization technology to generate initial population whose individuals are scattered uniformly over the target search space. So the algorithm can use them sufficiently in the subsequent iterations. What's more,it is based on an adaptive ε concept to obtain a good distribution along the true Pareto-optimal solutions. Finally,experiments on five benchmark problems with different features have shown that this algorithm does well not only in distribution,but also in convergence when compared to other evolution algorithms.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期119-127,共9页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(61203307) 湖北省科技支撑计划公益性科技研究类项目(2012BKB068) 中国博士后科学基金面上项目(2014M560700) 重庆博士后特别资助项目(XM2014057)
关键词 多目标优化 PARETO最优解 差分演化 正交设计 自适应ε占优 multi-objective optimization Pareto optimal solution differential evolution orthogonal design adaptive ε-dominance
  • 相关文献

参考文献10

二级参考文献134

共引文献552

同被引文献13

  • 1DIAF S, BELHAMEL M, HADDADI M. Technical and economic assessment of hybrid photovohaic/wind system with battery storage in Corsica island[J].Energy Policy, 2008, 36 (5) : 743-754.
  • 2ZHOU Wei, LOU Chengzhi, LI Zhoushi, et al. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems[J]. Applied Energy,2010,87(2) :380-389.
  • 3BANOS R, MANZANO-AGUGLIARO F, MONTOYA F G, et al. Optimization methods applied to renewable and sustainable energy: A review[ J]. Renewable and Sustainable Energy Reviews, 2011, 15 (4) :1753-1766.
  • 4YANG Hongxing, ZHOU Wei, LU Lin, et al. Optimal sizing method for stand-alone hybrid solar wind system with LPSP technology by using genetic algorithm [ J]. Solar Energy, 2008, 82 (4) :354-367.
  • 5MAHESWARI K U, RAJA R M S. Optimal rescheduling of generators for congestion management by using godlike algorithm [ J ]. International Journal of Engineering Trends and Technology, 2014, 10(9) :435-440.
  • 6OLDENHUIS R P S, OLDENHUIS R P S. Trajectory optimization for a mission to the solar bow shock and minor planets [ J ]. Aerospace Engineering, 2010:86-107.
  • 7NARKHEDE M S, CHATFERJI S, GHOSH S. Comparative analysis of EV-MOGA and GODLIKE multi-objective evolutionary algorithms for risk based optimal power scheduling of a virtual power plant[ J]. Ictact Journal on Soft Computing, 2015, 5 (2) :917-924.
  • 8刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用[J].电工技术学报,2008,23(2):103-108. 被引量:130
  • 9王瑞琪,李珂,张承慧,杜春水,褚晓广.基于多目标混沌量子遗传算法的分布式电源规划[J].电网技术,2011,35(12):183-189. 被引量:58
  • 10刘柏良,黄学良,李军.计及可时移负荷的海岛微网电源优化配置[J].中国电机工程学报,2014,34(25):4250-4258. 被引量:53

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部