期刊文献+

二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成 被引量:1

Statistical properties of binomial and negative-binomial combinational optical field state and its generation in quantum diffusion channel
原文传递
导出
摘要 在组合二项-负二项分布的基础上,提出了二项一负二项组合光场态,这种态能在F0ck态历经量子扩散通道的过程中实现.导出了此光场的二阶相干度公式.g^(2)(t)=2-m^2+m/(m+kt)^2发现随着时间的推移光场从非经典Fock态变为经典态,光子数m经扩散通道后变成了m+疵,毒是扩散常数,相应的光子统计从亚泊松分布历经泊松分布再变成混沌光;初始Fock态的光子数越多,则扩散所需的时间越长. According to the combinational binomial-negative-binomial distribution, we propose a binomial-negative-binomial combinational optical field state, which can be generated in the process of a Fock state Iml(rnI passing through a m2 -bin quantum-mechanical diffusion channel. We derive the second-order coherence degree formula, g(2) (t) -~ 2 (m + nt)2' which is the diffusion constant. We find that in the process of the Fock state undergoing quantum diffusion and becoming classical, the corresponding photon statistics evolves from sub-Poissonian distribution to Poisson distribution and finally goes to a chaotic state. We also find that the more photons in the initial Fock state, the longer time is needed for quantum decoherence.
作者 范洪义 吴泽
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第8期49-55,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11175113)资助的课题~~
关键词 二项-负二项组合光场态 二阶相干度 亚泊松分布 泊松分布 binomial-negative-binomial combinational optical field state, second-order coherence, Poisson distribution, sub-Poissonian distribution
  • 相关文献

二级参考文献8

  • 1E.G. Fan, Phys. Lett. A 277 (2000) 212.
  • 2B. Li, Y. Chen, and H.Q. Zhang, Chaos, Solitons & Fra-tals 15 (2003) 647.
  • 3Z.S. Lu and H.Q. Zhang, Chaos, Solitons & Fractals 17(2003) 669.
  • 4F.D. Xie and Z.T. Yuan, Commun. Theor. Phys., (Beijing, China) 4a (2005) 39.
  • 5S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Phys. Lett. A289 (2001) 69.
  • 6Z.Y. Yan and H.Q. Zhang, Phys. Lett. A 285 (2001) 355.
  • 7C.P. Liu and X.P. Liu, Phys. Lett. A 303 (2002) 197.
  • 8Z.T. Fu,S.D. Liu, and S.K. Liu, Commun. Theor. Phys.(Seijing, China) 39 (2003) 531.

共引文献125

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部