摘要
在组合二项-负二项分布的基础上,提出了二项一负二项组合光场态,这种态能在F0ck态历经量子扩散通道的过程中实现.导出了此光场的二阶相干度公式.g^(2)(t)=2-m^2+m/(m+kt)^2发现随着时间的推移光场从非经典Fock态变为经典态,光子数m经扩散通道后变成了m+疵,毒是扩散常数,相应的光子统计从亚泊松分布历经泊松分布再变成混沌光;初始Fock态的光子数越多,则扩散所需的时间越长.
According to the combinational binomial-negative-binomial distribution, we propose a binomial-negative-binomial combinational optical field state, which can be generated in the process of a Fock state Iml(rnI passing through a m2 -bin quantum-mechanical diffusion channel. We derive the second-order coherence degree formula, g(2) (t) -~ 2 (m + nt)2' which is the diffusion constant. We find that in the process of the Fock state undergoing quantum diffusion and becoming classical, the corresponding photon statistics evolves from sub-Poissonian distribution to Poisson distribution and finally goes to a chaotic state. We also find that the more photons in the initial Fock state, the longer time is needed for quantum decoherence.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2015年第8期49-55,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11175113)资助的课题~~
关键词
二项-负二项组合光场态
二阶相干度
亚泊松分布
泊松分布
binomial-negative-binomial combinational optical field state, second-order coherence, Poisson distribution, sub-Poissonian distribution