期刊文献+

基于宽带吸波体的微带天线雷达散射截面缩减设计 被引量:5

Radar cross section reduction of microstrip antenna based on wide-band metamaterial absorber
原文传递
导出
摘要 利用加载集总电阻的方式设计出一种极化稳定且宽入射角的宽带超材料吸波体(wide-band metamaterial absorber,WBMA),在平面波垂直入射时,其吸波半波功率带宽达12.7 GHz,吸波率大于90%的带宽达10.42 GHz,峰值吸波率达99.9%.将其与微带天线共基板共接地板的方式加载,制备出WBMA微带天线,实现了天线宽频域内雷达散射截面(radar cross section,RCS)大幅缩减.仿真与实测结果表明:将WBMA加载于微带天线后,天线的前向增益提高了0.53 d B,整体辐射特性基本保持不变;在不同极化波下,天线的工作频带带内和带外等宽频域(6.95—17.91 GHz)内的单站RCS缩减大于3 d B以上,最大缩减值达21.2 d B;在天线的中心频点8 GHz处±48°的宽角域内,双站RCS缩减效果明显,很好地实现了天线的宽频域大角度的隐身设计. We design a wide-band metamaterial absorber (WBMA) with stable polarization and wide incident angle by loading a lumped resistance. The full-width at half-maximum of the absorber is 98%, the bandwidth of absorbing rate of more than 90% reaches 10.42 GHz, and the peak absorbing rate is 99.9% in the normal wave incidence. Loading the WBMA around the microstrip antenna by sharing the same substrate and ground plane, we fabricate the WBMA antenna, whose radar cross section (RCS) sharply decreases in the wide frequency range. Simulation and experimental results show that the antenna's radiation pattern is almost unchanged: just only the former gain improves 0.53 dB after loading the WBMA. Under different polarized waves, the antenna's monostatic RCS reduction is more than 3 dB within the working frequency band and beyond the working frequency band (6.95-17.91 GHz), the maximum value is 21.2 dB. The bistatic RCS decreases significantly from -48° to 48°at the middle working frequency (8 GHz), which well achieves the antenna stealth at the wide-band frequency and wide angle.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第8期118-124,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61331005 61471388 11204378 11274389 11304393 61302023) 中国博士后科学基金(批准号:2013M532131 2013M532221) 航空科学基金(批准号:20123196015 20132796018) 陕西省基础研究计划(批准号:2013JM6005)资助的课题~~
关键词 宽带超材料吸波体 微带天线 雷达散射截面缩减 wide-band metamaterials absorbing, microstrip antenna, radar cross section reduction
  • 相关文献

参考文献22

  • 1Engheta N .2002, IEEE International Symposium on An- tennas and Propagation and USNC/URSI National Ra- dio Science Meeting San Antonio, USA, June 12-16, 20O2 p16.
  • 2Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J .2008, Phys. Rev. Lett. 100 ,207402.
  • 3Gu C, Qu S B, Pei Z B, Xu Z .2011, Chin. Phys. B 20 ,037801.
  • 4Ghosh S, Bhattacharyya S, Kumar V S .2014, J. Appl. Phys. 115, 104503.
  • 5Avitzour Y, Urzhumov Y A, Shvets G .2009, Phys. Rev. B 79 ,045131.
  • 6Shrekenhamer D, Chen W C, Padilla W J .2013, Phys. Rev. Lett. 110, 177403.
  • 7Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J .2011, J. Appl. Phys. 110, 014909.
  • 8王雯洁,王甲富,闰明宝,鲁磊,马华,屈绍波,陈红雅,徐翠莲.2014,物理学报,63,174101.
  • 9Won H C, Jae H S, Tae H S, Woo Y L, Won J L, Chun G K .2014, Electron. Lett. 50, 292.
  • 10Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W .2011, Chin. Phys. B 20, 017801.

二级参考文献22

  • 1李文强,曹祥玉,高军,姚旭.2011,微波学报,279.
  • 2Juan Y, Shen Z X 2007 lEEEAntenna Wireless Propag. Lett. 6 288.
  • 3凌劲,龚书喜,张鹏飞,袁宏伟,路宝,王文涛.2011,西安电子科技大学学报(自然科学版),37295.
  • 4Jiang W, Liu Y, Gong S X 2009 IEEE Antenna Wireless Propag. Lett. $1275.
  • 5Costa F, Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propag. 58 1551.
  • 6Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt D 20071EEE Trans. Antennas Propag. 55 3630.
  • 7Zhang Y, Mittra R, Wang B Z, Huan N T 2009 Electron. Lett. 45 484.
  • 8Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402.
  • 9刘涛,曹祥玉,高军,郑秋容,李文强.2012,物理学报,61184101.
  • 10杨欢欢,曹祥玉,高军,刘涛,李文强.2012,电子与信息学报,342790.

共引文献6

同被引文献11

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部