期刊文献+

聚合物流体入口自然收敛半角和涡流长度比方程的建立和初步验证 被引量:1

Establishment and Preliminary Validation of the Equations Involving Half Angle of the Entry Natural Convergence and Vortex Length Ratio for Polymer Fluids
下载PDF
导出
摘要 入口收敛流动是聚合物流体黏弹特性的重要表现,流体入口自然收敛半角和涡流长度比是表征入口收敛流动的重要参数。对已提出的基于等效思想和最小能原理推导的在圆形流道的入口收敛流动方程进一步分析,引入黏度因子,提出了流体的入口自然收敛半角和涡流长度比的方程。结果表明,基于推导的方程对流体入口自然收敛半角和涡流长度比的预测与实验数据相符。随着Bagley校正因子的增加,流体入口自然收敛半角减小,涡流长度比增加。随着流道收缩比的增加,流体入口自然收敛半角先增大,然后几乎保持不变,而涡流长度比随着流道收缩比的增加而减小。 Entry converging flow is an important performance of the viscoelastic property for polymer fluid, the half angle of fluid entry natural convergence and the vortex length ratio are important parameters characterizing the entry converging flow. In this paper, the different equations of the entry converging flow in the circular runner published previously, which were based on equivalent thought and principle of minimum energy, were analyzed by introducing the viscosity factor. The half angle of the fluid entry natural convergence and the vortex length ratio of the entry converging flow were proposed accordingly. The result showed that predicted values of half angle of the fluid entry natural convergence and vortex length ratio based on the proposed equations accorded with the experimental values. With increasing Bagley correction factor, the half angle of the fluid entry natural convergence decreased and the vortex length ratio increased. With increasing of runner contraction ratio, the half angle of the fluid entry natural convergence initially increased but then was almost constant. Moreover, the vortex length ratio decreased with increasing runner contraction ratio.
出处 《塑料工业》 CAS CSCD 北大核心 2015年第4期33-36,73,共5页 China Plastics Industry
基金 河南省教育厅科学技术研究重点项目(14B430013) 河南理工大学博士基金项目(B2013-016)
关键词 入口收敛流动 流体入口自然收敛半角 涡流长度比 预测 Entrance Converging Flow Half Angle of Fluid Entry Natural Convergence Vortex Length Ratio Prediction
  • 相关文献

参考文献15

  • 1BALDI F, RAGNOLI J, BRIATICO-VANGOSA F. Meas- urement of the high rate flow properties of filled HDPE melts by capillary rheometer: Effects of the test geometry [ J ]. Polym Test, 2014, 37: 201-209.
  • 2SILVA J, SANTOS A C, CANEVAROLO S V. In-line mo- nitoring flow in an extruder die by rheo-optics [ J ]. Polym Test, 2015, 41 (1) : 63-72.
  • 3BALDI F, FRANCESCHINI A, BIGNOTH F. On the measurement of the high rate flow properties of organo-clay platelet filled polyamide 6 melts by capillary rheometer [ J ]. Polym Test, 2011, 30 (7): 765-772.
  • 4FAVERO J L, SECCHI A R, CARDOZO N S M, et al. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations [ J ]. J Non-Newton Fluid Mech, 2010, 165 (23-24): 1625-1636.
  • 5GALVIN K J, LEE H, REBHOLZ L G. Approximation of viscoelastic flows with defective boundary conditions [ J ]. J Non-Newton Fluid Mech, 2012, 169: 104-113.
  • 6HERTEL D, VALETIE R, MUENSTEDT H. Three-dimen- sional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene ( LLDPE ) into a slit die [J]. J Non-Newton Fluid Mech, 2008, 153 (2-3) : 82 -94.
  • 7COGSWELL F N. Converging flow of polymer melts in extru- sion dies [J]. Polym Eng Sci, 1972, 12 (1) : 64-73.
  • 8BINDING D M. An approximate analysis for contraction and converging flows [ J]. J Non-Newton Fluid Mech, 1988, 27 (2): 173-189.
  • 9COLLYER A, CLEGG D. Rheological measurement [ M ]. London: Chapman and Hall, 1998: 455-491.
  • 10ZATLOUKAL M, VLCEK J, TZOGANAKIS C, et al. Im- provement in techniques for the determination of extensional rheological data from entrance flows: Computational and ex- perimental analysis [ J ]. J Non-Newton Fluid Mech, 2002, 107 (1-3): 13-37.

同被引文献49

  • 1Wang J,James D F. Lubricated Extensional Flow of Vis-coelastic Fluids in a Convergent Microchannel[J]. Journalof Rheology, 2011,55(5): 1103-1126.
  • 2Silva J,Santos A C,Canevarolo S V. In-line MonitoringFlow in an Extruder Die by Rheo-optics[J]. Polymer Tes-ting, 2015, 41(1): 63-72.
  • 3Fan J,Peng X. Entrance Length of Polymer Flow Through aContraction Die: Comparison of Calculation from an Equa-tion and Flow Induced Birefringence Measurements [J].Journal of Macromolecular Science,Part B: Polymer Phy-sics, 2012,51(5) : 946-955.
  • 4Castillo-Tejas J, Castrejon-Gonzalez O, Alvarado J F J. etal. Prediction of Excess Pressure Drop in Contraction-ex-pansion Flow by Molecular Dynamics : Axisymmetric andPlanar Configurations^]. Journal of Non-Newtonian FluidMechanics,2014,210(8) : 1-11.
  • 5AvendanoJ,Pannacci N,Herzhaft B, et al. Entrance andExit Effects for a Viscoelastic Liquid Displacing a SimpleLiquid Through a Contraction[J]. Journal of Non-Newto-nian Fluid Mechanics, 2013,199(7) * 51-60.
  • 6Yang J,Dai Y H, Li J G. A Different Extensional Visco-sity Prediction Based on Entry Pressure Drop[J]. Journalof Applied Polymer Science, 2014,131(15) : 1-5.
  • 7Lopez-Aguilar J E,Webster M F,Tamaddon-Jahromi HR,et al. A New Constitutive Model for Worm-like Micel-lar Systems-Numerical Simulation of Confined Contraction-expansion Flows[J]. Journal of Non-Newtonian Fluid Me-chanics, 2014. 204(1):7-21.
  • 8Yang J, Qin G,Liang J. Flow Properties and ExtensionalViscosity Prediction of High-density Polyethylene and Poly(butylene succinate) Blends [J]. Journal of ThermoplasticComposite Materials,2015.
  • 9Khandavalli S,Rothstein J P. Extensional Rheology ofShear-thickening Fumed Silica Nanoparticles Dispersed inan Aqueous Polyethylene Oxide Solution [J]. Journal ofRheology, 2014,58(2): 411-431.
  • 10Baldi F,Franceschini A,Ricco T. Determination of theElongational Viscosity of Polymer Melts by Melt Spin-ning Experiments. A Comparison with Different Experi-mental Techniques[J]. Rheologica Acta, 2007,46(7):965-978.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部