期刊文献+

一种改进的两阶段目标跟踪方法

An Improved Two-phase Object Tracking Method
下载PDF
导出
摘要 针对动态场景中使用固定模板进行跟踪容易丢失目标的问题以及利用动态模型估计目标位置时产生的漂移问题,提出一种改进的基于偏最小二乘法的两阶段目标跟踪方法。该方法利用偏最小二乘分析法对在高维特征空间中搜集的正负样本降维,获得特征子空间构建目标表观模型集。跟踪在贝叶斯推理框架下进行:在初始跟踪阶段,利用粒子滤波原理及似然函数估计目标的初步位置;在校正阶段,采用一种适应性的基准模型确定最终的目标位置。对一些视频序列的实验结果证明了所提出方法的有效性。 To solve the problem that tracking with fixed templates is prone to fail in dynam- ic scenes and alleviate the visual drift problem caused by using dynamic models to estimate the target position in object tracking, an improved two-phase object tracking is proposed by partial least squares method. A low-dimensional feature subspace is studied with a few posi- tive and negative samplcs in the high-dimensional feature space via partial least squares ( PLS ) analysis, which constructs an appearance model. Object tracking is carried out within the Bayesian inference framework:in the initial tracking phase, the preliminary estimation of object location is achieved by particle filter principle;in calibrating phase, the adaptive benchmark model is adopted to determine the final target location. Experimental results on some video sequences show the proposed method effectiveness.
出处 《沈阳理工大学学报》 CAS 2015年第2期16-22,共7页 Journal of Shenyang Ligong University
基金 沈阳市科技创新专项基金资助项目(F13-316-1-73)
关键词 目标跟踪 偏最小二乘法 粒子滤波 动态模型集 基准模型 object tracking partial least squares ( PLS ) particle filter dynamic model benchmark model
  • 相关文献

参考文献14

  • 1A. Yilmaz, O. Javed, M. Shah. Object tracking : A sur- vey [ J]. ACM Computing Surveys (CSUR) ,2006,38(4) :13.
  • 2D. Ross, J. Lim, R. Lin, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008,77 ( 1 - 3 ) : 125 - 141.
  • 3A. Adam, E. Rivlin, I. Shimshoni. Robust fragments- based tracking using the integral histogram [ C ]. CVPR,2006 IEEE Computer Society Conference on. IEEE,2006:798 - 805.
  • 4X. Mei, H. Ling. Robust visual tracking using 11 mini- mization[ C]. Computer Vision ,2009 IEEE 12th Inter- national Conference on. IEEE ,2009 : 1436 - 1443.
  • 5张谢华,路梅,田敏.基于支持向量机的目标跟踪研究[J].计算机工程与设计,2011,32(12):4210-4212. 被引量:2
  • 6H. Grabner, M. Grabner, H. Bischof. Real-time tracking via on-line boosting[ C]. BMVC,2006:6.
  • 7B. Babenko, M. Yang, S. Belongie. Robust object tracking with online multiple instance learning [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on ,2011,33 ( 8 ) : 1619 - 1632.
  • 8Qing Wang, Feng Chen, Wenli Xu, et al. Object Track- ing via Partial Least Squares Analysis [ J]. Image Pro- cessing, IEEE Transactions on, 2012,21 ( 10 ) :4454 - 4465.
  • 9Qing Wang, Feng Chen, Wenli Xu, et al. Online Dis- criminative Object Tracking with Local Sparse Repre- sentation [ C ]. Applications of Computer Vision (WACV), 2012 1EEE Workshop on. IEEE, 2012: 425 - 432.
  • 10X. Li, W. Hu, Z. Zhang, et al. Robust visual tracking based on incremental tensor subspace learning [ C ]. Computer Vision, 2007. ICCV 2007. IEEE 11 th International Conference on. IEEE ,2007 : 1 - 8.

二级参考文献15

  • 1代六玲,黄河燕,陈肇雄.一种文本分类的在线SVM学习算法[J].中文信息学报,2005,19(5):11-15. 被引量:13
  • 2Porikli F.Integral histogram:a fast way to extract histograms in Cartesian spaces [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:829-836.
  • 3Wijinhover R G J. Fast training of object detection using stochastic gradient descent[C].20th International Conference on Pattern Recognition,2010:424-427.
  • 4Nanni Loris.Lumini alessandra.Local binary patterns for a hy- brid fingerprint matcher [J]. Pattern Recognition, 2008,41 (11): 3461-3466.
  • 5Dalai N,Triggs B.Histograms of oriented gradients for human detection[C].Proceedings of IEEE Computer Society Conferen- ce on Computer Vision and Pattern Recognition,2005:886-893.
  • 6Ross D,Lim J, Yang M H.Probabilistic visual tracking with incre- mental subspace update[C].Proceedings of ECCV,2004:470-482.
  • 7汪凯斌,俞卞章,李会方,奚玮.基于LBP驱动的区域围道纹理分割模型[J].西北工业大学学报,2007,25(5):712-715. 被引量:4
  • 8哈明虎,彭桂兵,赵秋焕,马丽娟.一种新的模糊支持向量机[J].计算机工程与应用,2009,45(25):151-153. 被引量:7
  • 9韩宁,闫德勤.基于支持向量机的鲁棒盲水印算法[J].计算机工程与设计,2009,30(22):5273-5275. 被引量:5
  • 10高越,赵丹培,姜志国.复杂环境下的鲁棒目标跟踪方法[J].计算机辅助设计与图形学学报,2010,22(5):817-822. 被引量:11

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部