期刊文献+

门限CARR模型的实证研究——以上证市场为例

Empirical Study on the Threshold CARR Model:An Example from Shanghai Stock Market
下载PDF
导出
摘要 金融数据的波动往往存在着非线性的特征,为了更好地刻画上证市场股价指数的波动特征,将门限模型与CARR模型相结合,构建了门限CARR模型。首先借鉴门限自回归条件持续期模型(TACD)的建模方法,构建门限CARR模型;其次选取2002年1月4日至2012年2月15日的上证综合股价指数的日数据进行研究,通过非线性检验和门限值识别的方法找到样本序列的门限值;最后建立了拟合上证股票市场波动的非线性特征的门限CARR模型,得到上证股票市场在高、低波动下的不同波动特征。 Abstract: The volatility of financial data often has nonlinear characteristics. In order to de- scribe the volatility characteristics of Shanghai stock market, we combined the threshold model and CARR (Conditional Auto-Regressive Range) model to construct the threshold CARR model. First, we borrowed the lessons from the threshold autoregressive conditional duration model (TACD) to construct the threshold CARR model;Secondly, we used the daily data of Shanghai stock market from January 4th,2002 to February 15th,2012 as the sample and find the threshold value through the nonlinear test and threshold recognition method;At last, we established the threshold CARR model which fit the nonlinear character- istics of the volatility of Shanghai stock market and describe the different volatility charac- teristics of Shanghai stock market.
作者 邹文俊
出处 《沈阳理工大学学报》 CAS 2015年第2期78-83,共6页 Journal of Shenyang Ligong University
基金 国家自然科学基金资助项目(70901055) 国家社会科学基金资助项目(14CTJ012) 教育部博士点新教师基金资助项目(20090032120031) 天津大学自主创新基金项目
关键词 非线性 门限模型 CARR模型 波动 nonlinear characteristics threshold model CARR model volatility
  • 相关文献

参考文献11

  • 1Hamilton J D, Susmel R. Autoregressive conditional heteroskedasticity and changes in regime J J. Journal of Econometrics, 1994, (64) :307 - 333.
  • 2Tong H. On a Threshold Model[M].Pattern Recognition and Signal Processing, Amsterdan: SijthoffSdIoordhoff, 1978 : 101 - 141.
  • 3Chou R Y. Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) model J ]. Journal of Money' Credit and Banking ,2005,37 ( 3 ) :561 - 582.
  • 4丁忠明,夏万军.中国股市波动的CARR模型分析[J].商业经济与管理,2005(12):41-45. 被引量:8
  • 5程细玉,夏天.金融市场波动性CARR类模型与GARCH类模型的比较研究[J].数学的实践与认识,2009,39(13):12-18. 被引量:5
  • 6Engle R F, Russell J F. Autoregressive Conditional Du- ration:a New Model for Irregular Spaced Transaction DataE J ]. Econometrica, 1998,66 ( 5 ) : 1127 - 1162.
  • 7Zhang M Y, Russell J, Tsay R. A nonlinear autoregres- sire conditonal duration model with applications to fi- nancial transactions data E J]. Journal of Econometrics, 2001, (104) : 179 - 207.
  • 8Brock W A,Dechert W D. LeBaron Scheinkrnan J. A. A Test for Independence Based on the Correlation Dimen- sion J]. Economic Review, 1996, ( 15 ) : 197 - 235.
  • 9Scheinkman J A, LeBaron B. Nonlinear Dynamics and Stock Returns J]. The Journal of Business, 1989,62 (3) :311 -337.
  • 10Hsieh D A. Modeling Heteroscedasticity in Daily For- eign-Exchange Rates J ]. Journal of Business & Eco- nomic Statistics, 1989,7 ( 3 ) : 307 - 317.

二级参考文献19

  • 1王玉荣.中国股票市场波动性研究——ARCH模型族的应用[J].河南金融管理干部学院学报,2002,20(5):36-37. 被引量:13
  • 2Mandelbrot, B. The Variation of Certain Speculative Prices [J]. Journal of Business, 1963, (36) :294 - 419.
  • 3Parkinson, M.. The extreme value method for estimating the variance of the rate of return [ J ]. Journal of Business, 1980,(53) :61 - 65.
  • 4Chou, R. Forecasting financial volatilities with extreme values : the Conditional AutoRegressive Range ( CARR ) Model [ Z ] . Working paper, The Institute of Economics Academia Sinica, Taiwan, 2002.
  • 5Engle, R. , and J. Russell. Autoregressive conditional duration: a new model for irregular spaced transaction data[J]. Econometrica, 1998, (66) : 1127 - 1162.
  • 6Bollerslev, T., and J. Wooldridge Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances[ J]. Econometric Reviews, 1992, (5).
  • 7Garman,M. B.,Klass,M. J.On the Estimation of Security Price Volatilities from Historical Data[].Journal of Business.1980
  • 8Wiggins,J.B.Empirical tests of the bias and efficiency of the extreme-value variance estimator for common stocks[].Journal of Business.1991
  • 9Rogers,Chris,and Stephen Satchell.“Estimating Variance from High,Lowand Closing Prices.”[].Annalsof Applied Probability.1991
  • 10Kunitomo,Naoto.“Improving the Parkinson Method of Estimating Security Price Volatilities.”[].Journal of Business.1992

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部