期刊文献+

外源添加亮氨酸提高乳酸乳球菌酸胁迫抗性 被引量:3

Exogenous Leucine Improved the Acid Tolerance of Lactococcus lactis Under Acid Stress
下载PDF
导出
摘要 在乳酸乳球菌生长过程中外源添加浓度为10mmol/L的亮氨酸,可有效提高乳酸乳球菌在酸胁迫环境下的酸耐受性。在酸性环境中(pH5.0),添加亮氨酸的菌株的生物量为对照菌株的1.24倍;经过酸胁迫(pH4.0)5h后,添加亮氨酸菌株的存活率是对照菌株的28.5倍。进一步的研究表明,亮氨酸的添加可提高胞内NH4+浓度,有效的维持酸胁迫环境下胞内pH(pHin)的稳定,并有效维持乳酸脱氢酶(LDH)的活性,从而有效提高了乳酸乳球菌对酸胁迫的抵御能力。 The addition of leucine was proved to improve the tolerance of Lactococcus lactis NZ9000 to acid stress.When cultivated with leucine under acid stress(pH 5.0),the biomass of L.lactis NZ9000(Leu^+) increased 1.24 fold,compared to L.lactis NZ9000(Leu^-)(without leucine addition).After challenged at pH 4.0 for 5h,the survival rate of L.lactis NZ9000(Leu^+) increased 28.5 fold,compared to L.lactis NZ9000(Leu^-).Further measurements indicated that the addition of leucine could improve the concentration of intracellular NH4^+,help to maintain the intracellular pH(pHin) at a relatively high level and protect the activity of lactate dehydrogenase(LDH).Therefore,the addition of leucine could enhance the acid tolerance of L.lactis.
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2015年第2期134-139,共6页 Journal of Food Science and Biotechnology
基金 国家自然科学基金项目(31470160) 国家863计划项目(2011AA100901) 国家973计划项目(2013CB733902) 中国博士后科学基金项目(2013M540538)
关键词 乳酸菌 亮氨酸 酸胁迫 酸胁迫抗性 lactic acid bacteria leucine acid stress acid tolerance
  • 相关文献

参考文献16

  • 1Griswold A R,Chen Y Y M,Bume R A.Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159[J].Journal Of Bacteriology,2004,186(6):1902-1904.
  • 2Walker D C,Girgis H S,Klaenhammer T R.The groESL chaperone operon of Lactobacillus johnsonii[J].Applied and Environmental Microbiology,1999,65(7):3033-3041.
  • 3Burgess C.Riboflavin production in Lactococcus lac tis:potential for in situ production of vitamin-enriched foods[J].Applied and Environmental Microbiology,2004,70(10):5769-5777.
  • 4Zhu Y,Zhang Y,Li Y.Understanding the industrial application potential of lactic acid bacteria through genomics[J].Applied Microbiology and Biotechnology,2009,83(4):597-610.
  • 5Carvalheiro F.Mannitol production by lactic acid bacteria grown in supplemented carob syrup[J].Journal of Industrial Microbiology & Biotechnology,2011,38(1):221-227.
  • 6Sanders J W.A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation[J].Molecular Microbiology,1998,27(2):299-310.
  • 7WU C.A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance[J].Applied Microbiology And Biotechnology,2012,93(2):707-722.
  • 8Gosslau A.Heat shock and oxidative stress-induced exposure of hydrophobic protein domains as common signal in the induction ofhsp68[J].Journal of Biological Chemistry,2001,276(3):1814-1821.
  • 9Santiago B.The branched -chain amino acid ami notransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans[J].Journal of Bacteriology,2012,194(8):2010-2019.
  • 10Guillem H.A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress[J].Biochemical Journal,2012,441(1):255-264.

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部