期刊文献+

基于图像强度最优的SAR高精度运动补偿方法 被引量:4

A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization
下载PDF
导出
摘要 由于载体平台的不稳定性和测量传感器的精度限制,运动误差成为了提高合成孔径雷达(SAR)成像质量的一个瓶颈。基于图像锐度最优的自聚焦后向投影算法通过估计相位误差进行运动补偿,具有较高精度,但这种方法假设场景中所有像素点相位误差相同,即没有考虑运动误差的空变性,导致大部分像素点仍存在残留误差,造成成像质量下降。针对运动误差空变性的问题,该文提出一种高精度运动补偿方法,该方法在图像强度最大准则下,采用最优化技术估计天线相位中心测量误差,随后利用该测量误差估计量校正天线相位中心并进行后向投影成像。由于估计天线相位中心等效于估计每个像素点的距离历史,因此该方法可以对每个像素点进行高精度相位补偿。点目标仿真和实测数据处理结果均验证了所提方法的有效性。 Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar(SAR) images. The autofocus Back Projection(BP) algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers(APC) are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.
出处 《雷达学报(中英文)》 CSCD 2015年第1期60-69,共10页 Journal of Radars
基金 国家自然科学基金(61101170) 博士点基金(20110185110001) 航空科学基金(20142080007)资助课题
关键词 合成孔径雷达(SAR) 高精度运动补偿 自聚焦后向投影 空变性 Synthetic Aperture Radar(SAR) High-precision motion compensation Autofocus back projection Spatial variance
  • 相关文献

参考文献1

二级参考文献2

共引文献5

同被引文献28

  • 1刘军,王冬红,张永生.GPS/INS系统HPR与OPK角元素的剖析与转换[J].测绘科学,2006,31(5):54-56. 被引量:20
  • 2李冉,皮亦鸣,张晓玲.基于改进BP算法的机载双基地SAR成像[J].雷达科学与技术,2006,4(6):348-352. 被引量:7
  • 3金玉荣,孙造宇,梁甸农.星载SAR地面场景RCS仿真[J].现代电子技术,2007,30(7):15-18. 被引量:4
  • 4CERUTTI-MAORI D,SIKANETA I.A generalization of DPCA processing for multichannel SAR/GMTI radars[J].IEEE Transactions on Geoscience and Remote Sensing Society,2013,51(1):560-572.
  • 5WEBER P,PREMJI A,NOHARA T J,et al.SAR-GMTI processing with canada’s radarsat 2 satellite[C]//Proceedings of2000 IEEE Adaptive Systems for Signal Processing,Communications,and Control Symposium.Lake Louise,Alta:IEEE,2000:379-384.
  • 6BOERNER W M,YAMAGUCHI Y.Extra wideband polarimetry,interferometry and polarimetric interferometry in synthetic aperture remote sensing[J].IEICE Transactions on Communi-ty,2000,83(9):1906-1915.
  • 7WANG J,LIU X.Automatic correction of range migration inSAR imaging[J].IEEE Geoscience and Remote Sensing So-ciety,2010,7(2):256-260.
  • 8WANG J,LIU X.SAR minimum-entropy autofocus using anadaptive-order polynomial model[J].IEEE Geoscience and Re-mote Sensing Society,2006,3(4):512-516.
  • 9SUO Z,LI Z,BAO Z.Multi-channel SAR-GMTI method ro-bust to coregistration error of SAR images[J].IEEE Geo-science and Remote Sensing Society,2010,46(4):2035-2043.
  • 10LI F K,GOLDSTEIN R M.Studies of multibaseline space-borne interferometric synthetic aperture radars[J].IEEE Geo-science and Remote Sensing Society.1990,28(1):88-97.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部