期刊文献+

金融领域的随机建模与基于软件R的Monte Carlo模拟(1):金融期权

Stochastic modelling in finance and Monte Carlo simulations with R. Part A: Finance options
下载PDF
导出
摘要 为了让更多人了解期权及其相关金融衍生品,论文系统地介绍了金融数学中一些描述资产行为的经典模型,并从数学与计算机仿真的角度,由浅入深地介绍期权定价的计算方法.首先介绍了欧式期权及其研究的必要性,并给出了相关的金融名词的解释,最后估计了期权价值的上下界. The aim of this series articles is to help more persons to know options and other financial derivatives. We will introduce several classical models for the behavior of the asset price in the field of financial mathematics systematically,then give the method of computing the option values from the point of mathematics and computer simulations. This paper introduce the definitions of European options and their study necessity,give the interpretation of the relevant financial names and estimate the option bounds.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2015年第1期24-30,共7页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(11171056 11171081)
关键词 欧式期权 期权定价 投资组合 上下界 European options option value portfolio upper and lower bounds
  • 相关文献

参考文献18

  • 1宋鸿兵.货币战争[M].北京:中信出版社,2011.
  • 2Venables W N, Smith D M, the R Development Core Team.An introduction to R: A programming environment for data analysis and graphics, Version 2.10.1[R].2009.
  • 3Samuelson P A. Rational theory of warrant pricing [ J ]. Industrial Management Review, 1965,6 (2) : 13 -39.
  • 4Black F,Scholes M.The pricing of options and corporate liabilities [ J ] .The Journal of Political Economy, 1973,81 (3) : 637-654.
  • 5Merton R C. Theory of rational option pricing [J]. The Bell Journal of Economics and Management Science, 1973,4 (1) :141-183.
  • 6Cox J C, Ross S A, Rubinstein M.Option pricing: A sim- plified approach [ J ]. Journal of Financial Economics, 1979,7 (3) :229-263.
  • 7Cox J C, Ingersoll J E, Ross S A. A theory of the term structure of interest rates [ J ]. Econometrica, 1985, 53 (2) : 385-407.
  • 8Karatzas I, Shreve S E. Brownian motion and stochastic calculus [ M ] .New York : Springer-Verlag, 1988.
  • 9Mao X R. Stochastic differential equations and applications [ M ] .2nd Ed. Cambridge : Woodhead Publishing, 2007.
  • 10Tretyakov M V. Introductory course on financial mathe- matics [ M ]. London : Imperial College Press, 2013.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部